Fall 2018, Math 320: Week 2 Problem Set
 Due: Tuesday, September 11th, 2018 The Fundamental Theorem of Arithmetic

Discussion problems. The problems below should be completed in class.
(D1) Prime Factorization and GCDs. The goal of this problem is to prove the following theorem.
Theorem. If $a=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}$ for some distinct primes p_{1}, \ldots, p_{k} with each $r_{i}, s_{i} \geq 0$, then $(a, b)=p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$.
(a) Write your answer to Problem (P1) and the above theorem on the board.
(b) Let $a=2^{2} 3^{1} 5^{1}$ and $b=2^{1} 3^{2} 7^{1}$. Find (a, b), and verify that your answer is correct by finding all divisors of a and b. Also verify this matches the above theorem.
(c) Fill in the gaps in the following proof that if $(a, b)=d$, then $(a / d, b / d)=1$.

Proof. Since $d \mid a$ and $d \mid b, \frac{a}{d}$ and $\frac{b}{d}$ are integers. By Problem (R3) from last week,

$$
d=(a, b)=\left(d \frac{a}{d}, d \frac{b}{d}\right)=
$$

and dividing both sides by d completes the proof.
(d) Prove that $(a, b)=1$ if and only if there is no prime p such that $p \mid a$ and $p \mid b$. Hint: remember that sometimes it is easier to prove the contrapositive of a statement!
(e) Prove that $p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$ is a divisor of both a and b.
(f) Use the above results to prove $(a, b)=p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$.
(D2) Using the Fundamental Theorem of Arithmetic. The goal of this problem is to practice writing proofs utilizing prime factorization.
(a) Below is a proof that there are infinitely many primes. Locate and correct the error in the proof.

Proof. By way of contradiction, suppose there are only k primes p_{1}, \ldots, p_{k}. Let

$$
a=p_{1} \cdots p_{k}+2
$$

For each i, we have $p_{i} \mid p_{1} \cdots p_{k}$, so $p_{i} \nmid a$. Since this holds for every prime, no primes divide a, meaning a cannot be written as a product of primes. This contradicts the fundamental theorem of arithmetic.
(b) The following is a proof by contradiction that if p is prime and $p \mid a_{1} \cdots a_{k}$, then $p \mid a_{i}$ for some i. Write an alternative proof that uses induction on k.

Proof. By way of contradiction, suppose p is prime and $p \mid a_{1} \cdots a_{k}$, but $p \nmid a_{i}$ for every i. Since $p \mid\left(a_{1} \cdots a_{k-1}\right)\left(a_{k}\right)$ and p is prime, either $p \mid a_{1} \cdots a_{k-1}$ or $p \mid a_{k}$. By assumption, $p \nmid a_{k}$, so $p \mid a_{1} \cdots a_{k-1}$. Repeating this process, we conclude $p \mid a_{1} a_{2}$. However, we assumed $p \nmid a_{1}$ and $p \nmid a_{2}$, which contradicts the fact that p is prime.
(c) Use Problem (D1) to prove that if $d=(a, b)$, then $d^{2}=\left(a^{2}, b^{2}\right)$.
(d) Prove or provide a counterexample: if p is prime, $n \geq 1$, and $p^{n} \mid a^{n}$, then $p \mid a$.
(e) If the hypothesis " p is prime" is dropped from the above statement, does that change its truth value? Again, provide a proof or a counterexample.

Required problems. As the name suggests, you must submit all required problems with this homework set in order to receive full credit.
(R1) Use the Euclidean algorithm to find $(533,234)$.
(R2) Prove that any $n \in \mathbb{Z}_{\geq 1}$ can be written in the form $n=2^{k} m$ for some $k \geq 0$ and odd m.
(R3) Prove that if $2^{p}-1$ is prime, then p is prime. Hint: prove the contrapositive.
(R4) Prove that if $c \mid a b$ and $(a, c)=d$, then $c \mid d b$.
(R5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If p is prime, $p \mid a$, and $p \mid a^{2}+b^{2}$, then $p \mid b$.
(b) If p is prime, then $2^{p}-1$ is prime.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Prove that if $n>2$, then there exists a prime p such that $n<p<n$!.
(S2) Suppose $p, q \geq 5$ are primes. Prove that $24 \mid p^{2}-q^{2}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Characterize which $a, b \in \mathbb{Z}$ satisfy $(a, b)=(a-b, a+b)$ in terms of prime factorizations. Note: your answer should include a concise "if and only if" statement, and a proof.

