Fall 2018, Math 320: Week 3 Problem Set
 Due: Tuesday, September 18th, 2018
 Modular Arithmetic

Discussion problems. The problems below should be completed in class.
(D1) Modular addition and multiplication. Determine which of the following are true without using a calculator.
(a) $1234567 \cdot 90123 \equiv 1 \bmod 10$.
(b) $2^{58} \equiv 3^{58} \bmod 5$.
(c) $2468 \cdot 13579 \equiv-3 \bmod 25$.
(d) $1234567 \cdot 90123=111262881731$.
(e) There exists $x \in \mathbb{Z}$ such that $x^{2}+x \equiv 1 \bmod 2$.
(f) There exists $x \in \mathbb{Z}$ such that $x^{3}+x^{2}-x+1=1522745$.
(D2) Divisibility rules. In the last lecture, we previewed a trick that let us to quickly determine when an integer is divisible by 9 . In what follows, fix a positive integer a, and suppose $\left(a_{r} \cdots a_{1} a_{0}\right)_{10}$ is the expression of a in base 10 , with $0 \leq a_{i} \leq 9$ for each i.
(a) Complete the following proof that $a \equiv\left(a_{r}+\cdots+a_{1}+a_{0}\right) \bmod 9$.

Proof. Expressing a in terms of its digits $a_{0}, a_{1}, \ldots, a_{r}$, we obtain

$$
\begin{aligned}
{[a]_{9} } & =\left[a_{r}(\ldots)+\cdots+a_{2} 10^{2}+a_{1} 10+a_{0}\right]_{9} \\
& =\underline{\vdots} \\
& = \\
& =\left[a_{r}+\cdots+a_{1}+a_{0}\right]_{9}
\end{aligned}
$$

meaning $a \equiv\left(a_{r}+\cdots+a_{1}+a_{0}\right) \bmod 9$.
(b) Prove that $9 \mid a$ if and only if the sum of the digits of a is divisible by 9 .
(c) Modify your proof in part (a) to prove that an integer a is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3 .
(d) Using part (c), develop a criterion for when an integer is divisible by 15.
(D3) The orders of elements of \mathbb{Z}_{n}. The order of an element $[a]_{n} \in \mathbb{Z}_{n}$ is the smallest integer k such that adding $[a]_{n}$ to itself k times yields $[0]_{n}$, that is $k a \equiv 0 \bmod n$.
(a) Find the order of each element of \mathbb{Z}_{12}. Do the same for \mathbb{Z}_{10}.
(b) Conjecture a formula for the order of $[a]_{n}$ in terms of a and n.
(c) Let k denote your conjectured order for $[a]_{n}$. Prove $[k]_{n}[a]_{n}=0$.
(d) Let k denote your conjectured order for $[a]_{n}$, and suppose $[c]_{n}[a]_{n}=0$. Prove $k \mid c$.
(e) Prove that your conjectured order formula holds.
(f) For which n does every nonzero $[a]_{n}$ have order n ? Give a (short and sweet) proof.

Required problems. As the name suggests, you must submit all required problems with this homework set in order to receive full credit.

Unless otherwise stated, $a, b, c, n \in \mathbb{Z}$ are arbitrary, and $n \geq 2$.
(R1) Determine whether each of the following statements is true or false. Justify your answers. You may not use a calculator.
(a) 14323341327 is prime.
(b) There exists $x \in \mathbb{Z}$ such that $x^{2}+1=123456789$.
(R2) Prove that an integer a is divisible by 4 if and only if the last two digits of a in base 10 form a 2-digit number that is divisible by 4 .
(R3) Prove $(a+b)^{3} \equiv a^{3}+b^{3} \bmod 3$ (this is a special case of the Freshman's Dream equation).
(R4) Suppose $a \equiv b \bmod n$. Prove $(a, n)=(b, n)$. Does the converse hold?
(R5) Determine whether each of the following is true or false. Give an explanation for each true statement, and a counterexample for each false statement.
(i) If $a \equiv b \bmod n$, then $a c \equiv b c \bmod n$.
(ii) If $a c \equiv b c \bmod n$, then $a \equiv b \bmod n$.
(iii) If $a b \equiv 0 \bmod n$, then $a \equiv 0 \bmod n$ or $b \equiv 0 \bmod n$.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) (a) Suppose $\left(a_{n} \cdots a_{1} a_{0}\right)_{10}$ expresses a in base 10. Prove that

$$
a \equiv a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{n} a_{n} \bmod 11
$$

(b) Use part (a) to decide whether 1213141516171819 is divisible by 11.
(S2) (a) Suppose $\left(a_{n} \cdots a_{1} a_{0}\right)_{10}$ expresses a in base 10 . Prove that $7 \mid a$ if and only if

$$
7 \mid\left(a_{n} \cdots a_{1}\right)_{10}-2 a_{0}
$$

(b) Use part (a) to decide whether 20182015 is divisible by 7 .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove that there are infinitely many primes of the form $3 k+2$ for some $k \geq 1$.

