Fall 2018, Math 320: Week 3 Problem Set Due: Tuesday, September 18th, 2018 Modular Arithmetic

Discussion problems. The problems below should be completed in class.

- (D1) Modular addition and multiplication. Determine which of the following are true without using a calculator.
 - (a) $1234567 \cdot 90123 \equiv 1 \mod 10$.
 - (b) $2^{58} \equiv 3^{58} \mod 5$.
 - (c) $2468 \cdot 13579 \equiv -3 \mod 25$.
 - (d) $1234567 \cdot 90123 = 111262881731$.
 - (e) There exists $x \in \mathbb{Z}$ such that $x^2 + x \equiv 1 \mod 2$.
 - (f) There exists $x \in \mathbb{Z}$ such that $x^3 + x^2 x + 1 = 1522745$.
- (D2) Divisibility rules. In the last lecture, we previewed a trick that let us to quickly determine when an integer is divisible by 9. In what follows, fix a positive integer a, and suppose $(a_r \cdots a_1 a_0)_{10}$ is the expression of a in base 10, with $0 \le a_i \le 9$ for each i.
 - (a) Complete the following proof that $a \equiv (a_r + \cdots + a_1 + a_0) \mod 9$.

Proof. Expressing a in terms of its digits a_0, a_1, \ldots, a_r , we obtain

$$[a]_{9} = [a_{r}(\underline{\qquad}) + \dots + a_{2}10^{2} + a_{1}10 + a_{0}]_{9}$$
$$= \underline{\qquad}$$
$$\vdots$$
$$= \underline{\qquad}$$

meaning $a \equiv (a_r + \dots + a_1 + a_0) \mod 9$.

- (b) Prove that $9 \mid a$ if and only if the sum of the digits of a is divisible by 9.
- (c) Modify your proof in part (a) to prove that an integer a is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3.
- (d) Using part (c), develop a criterion for when an integer is divisible by 15.
- (D3) The orders of elements of \mathbb{Z}_n . The order of an element $[a]_n \in \mathbb{Z}_n$ is the smallest integer k such that adding $[a]_n$ to itself k times yields $[0]_n$, that is $ka \equiv 0 \mod n$.
 - (a) Find the order of each element of \mathbb{Z}_{12} . Do the same for \mathbb{Z}_{10} .
 - (b) Conjecture a formula for the order of $[a]_n$ in terms of a and n.
 - (c) Let k denote your conjectured order for $[a]_n$. Prove $[k]_n[a]_n = 0$.
 - (d) Let k denote your conjectured order for $[a]_n$, and suppose $[c]_n[a]_n = 0$. Prove $k \mid c$.
 - (e) Prove that your conjectured order formula holds.
 - (f) For which n does every nonzero $[a]_n$ have order n? Give a (short and sweet) proof.

Required problems. As the name suggests, you must submit *all* required problems with this homework set in order to receive full credit.

Unless otherwise stated, $a, b, c, n \in \mathbb{Z}$ are arbitrary, and $n \geq 2$.

- (R1) Determine whether each of the following statements is true or false. Justify your answers. You may *not* use a calculator.
 - (a) 14323341327 is prime.
 - (b) There exists $x \in \mathbb{Z}$ such that $x^2 + 1 = 123456789$.
- (R2) Prove that an integer a is divisible by 4 if and only if the last two digits of a in base 10 form a 2-digit number that is divisible by 4.
- (R3) Prove $(a+b)^3 \equiv a^3 + b^3 \mod 3$ (this is a special case of the Freshman's Dream equation).
- (R4) Suppose $a \equiv b \mod n$. Prove (a, n) = (b, n). Does the converse hold?
- (R5) Determine whether each of the following is true or false. Give an explanation for each true statement, and a counterexample for each false statement.
 - (i) If $a \equiv b \mod n$, then $ac \equiv bc \mod n$.
 - (ii) If $ac \equiv bc \mod n$, then $a \equiv b \mod n$.
 - (iii) If $ab \equiv 0 \mod n$, then $a \equiv 0 \mod n$ or $b \equiv 0 \mod n$.

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

(S1) (a) Suppose $(a_n \cdots a_1 a_0)_{10}$ expresses a in base 10. Prove that

$$a \equiv a_0 - a_1 + a_2 - a_3 + \dots + (-1)^n a_n \mod 11.$$

- (b) Use part (a) to decide whether 1213141516171819 is divisible by 11.
- (S2) (a) Suppose $(a_n \cdots a_1 a_0)_{10}$ expresses a in base 10. Prove that 7 | a if and only if

$$7 \mid (a_n \cdots a_1)_{10} - 2a_0.$$

(b) Use part (a) to decide whether 20182015 is divisible by 7.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove that there are infinitely many primes of the form 3k + 2 for some $k \ge 1$.