## Fall 2018, Math 320: Week 4 Problem Set Due: Tuesday, September 25th, 2018 Introduction To Rings

Discussion problems. The problems below should be completed in class.
(D1) Checking ring axioms. Determine which of the following sets $(R,+, \cdot)$ forms a ring under the given addition and multiplication. For each $R$ that is indeed a ring, determine whether $R$ is (i) commutative, (ii) an integral domain, and (iii) a field.
(a) The set $R$ of all $2 \times 2$ real matrices (under matrix addition/multiplication) given by

$$
R=\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

(b) The set $R=\left\{r_{5} x^{5}+\cdots+r_{1} x+r_{0}: r_{i} \in \mathbb{R}\right\}$ of polynomials in a variable $x$ with real coefficients and degree at most 5 , under the usual addition and multiplication.
(c) The set $R=\mathbb{R} \cup\{\infty\}$ of real numbers together with infinity, and addition and multiplication operations $a \oplus b=\min (a, b)$ and $a \odot b=a+b$, respectively.
(d) The set $R=\mathbb{Z}$ with operations $\oplus$ and $\odot$ given by $a \oplus b=a+b$ and $a \odot b=a+b$ (in particular, both addition and multiplication in $R$ correspond to integer addition).
(e) The set $R=\{p(x) \in \mathbb{R}[x]: p(0) \in \mathbb{Z}\}$ of polynomials in a variable $x$ with real coefficients and integer constant term, under the usual addition and multiplication. For example, $2 x^{2}+\frac{1}{2} x+5 \in R$ and $\frac{6}{5} x \in R$, but $5 x+\frac{1}{3} \notin R$.
(D2) Cartesian products. Recall that the Cartesian product of two rings $R_{1}$ and $R_{2}$ is the set

$$
R_{1} \times R_{2}=\left\{(a, b): a \in R_{1}, b \in R_{2}\right\}
$$

with addition $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and multiplication $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)$.
(a) Find the addivite inverses of $\left([1]_{6},[0]_{3}\right),\left([3]_{6},[2]_{3}\right)$, and $\left([5]_{6},[1]_{3}\right) \in \mathbb{Z}_{6} \times \mathbb{Z}_{3}$.
(b) What is the multiplicative identity of $\mathbb{Z}_{6} \times \mathbb{Z}_{3}$ ? Which elements listed in part (a) have a multiplicative inverse?
(c) Justify each " $=$ " in the following proof that addition is commutative in $R_{1} \times R_{2}$ for any rings $R_{1}$ and $R_{2}$.

Proof. Given $(a, b),(c, d) \in R_{1} \times R_{2}$, we have

$$
(a, b)+(c, d)=(a+c, b+d)=(c+a, b+d)=(c+a, d+b)=(c, d)+(a, b)
$$

which completes the proof.
(d) Prove that every element of $R_{1} \times R_{2}$ has an additive inverse.
(D3) Arithmetic properties. In this section, you will prove several of the basic properties of the addition and multiplication operations on $\mathbb{Z}_{n}$.
(a) Given below is a proof that addition in $\mathbb{Z}_{n}$ is associative. Modify this to obtain a proof that $\mathbb{Z}_{n}$ satisfies the distributivity axiom.

Proof. For any $[a]_{n},[b]_{n},[c]_{n} \in \mathbb{Z}_{n}$, we have

$$
\begin{aligned}
{[a]_{n}+\left([b]_{n}+[c]_{n}\right) } & =[a]_{n}+[b+c]_{n}=[a+(b+c)]_{n}=[(a+b)+c]_{n} \\
& =[a+b]_{n}+[c]_{n}=\left([a]_{n}+[b]_{n}\right)+[c]_{n}
\end{aligned}
$$

which verifies associativity of addition.
(b) Is $\mathbb{Z}_{6}$ an integral domain? What about $\mathbb{Z}_{5}$ ? What about $\mathbb{Z}_{m n}$ for some $m, n \in \mathbb{Z}_{\geq 2}$ ?

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Prove that

$$
R=\left\{[3 k]_{18}: k \in \mathbb{Z}\right\}=\left\{[0]_{18},[3]_{18},[6]_{18},[9]_{18},[12]_{18},[15]_{18}\right\}
$$

is a subring of $\mathbb{Z}_{18}$. Does $R$ have a multiplicative identity?
(R2) Let $L$ denote the set of positive real numbers. Define the operations

$$
a \oplus b=a b \quad \text { and } \quad a \odot b=a^{\ln (b)}
$$

for all $a, b \in L$. Is $(L, \oplus, \odot)$ a ring? If so, is it commutative? Is it a field?
(R3) Let

$$
R=\left\{\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right): a, b, \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

(a) Prove that $R$ is a subring of $M(\mathbb{R})$.
(b) Prove the matrix

$$
J=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

is a right identity in $R$ (that is, $A J=A$ for every $A \in R$ ).
(c) Demonstrate the matrix $J$ above is not a left identity in $R$ by finding a matrix $A \in R$ so that $J A \neq A$.
(R4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $R$ is a ring and $S \subset R$, then $S$ is a subring of $R$.
(b) If $R$ and $S$ are both integral domains, then $R \times S$ is an integral domain.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Prove that

$$
\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}
$$

under the usual addition and multiplication of real numbers, is a field.
(S2) Consider $(C,+, \odot)$, where $C=\mathbb{R} \times \mathbb{R}, "+"$ is the standard componentwise addition on $\mathbb{R} \times \mathbb{R}$, and " $\odot$ " is given by

$$
(a, b) \odot(c, d)=(a c-b d, a d+b c)
$$

for all $(a, b),(c, d) \in C$. Prove that $C$ is a field.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove there is only one way to fill the addition and multiplication tables for a 3-element field $F=\{0,1, a\}$, and give the operation tables. What (more familiar) ring is this?

In this problem, you may use the following result (which we will prove next week): if $R$ is a ring and $r \in R$, then $0_{R} \cdot r=r \cdot 0_{R}=0_{R}$.

