Fall 2018, Math 320: Week 5 Problem Set
 Due: Tuesday, October 2nd, 2018
 Properties of Rings

Discussion problems. The problems below should be completed in class.
(D1) The ring structure of \mathbb{Z}_{n}. The goal of this problem is to determine which elements of \mathbb{Z}_{n} are zero-divisors, which are units, and which are neither.
(a) Compare your answers to problem (P1). Then, find all zero divisors in $\mathbb{Z}_{4}, \mathbb{Z}_{5}$, and \mathbb{Z}_{6}.
(b) Prove that if $m, n \geq 2$, then $\mathbb{Z}_{m n}$ is not an integral domain.
(c) Suppose p is prime. Prove that \mathbb{Z}_{p} is an integral domain. Hint: use the fact that if p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
(d) Multiply each element of \mathbb{Z}_{7} by $[4]_{7}$ (i.e. find $[0]_{7} \cdot[4]_{7}$, then $[1]_{7} \cdot[4]_{7}$, and so forth). Do the same with $[5]_{7}$. What do you notice about which elements of \mathbb{Z}_{7} appear?
(e) Multiply every element of \mathbb{Z}_{11} by $[3]_{11}$. Which elements of \mathbb{Z}_{11} are obtained? Hint: you may want to divide and conquer within your group!
(f) Suppose p is prime. Find and correct the error in the following proof that \mathbb{Z}_{p} is a field.

Proof. Fix an arbitrary $a \in \mathbb{Z}_{p}$. Since \mathbb{Z}_{p} is finite, let $a_{1}, a_{2}, \ldots, a_{p}$ denote the complete list of distinct elements of \mathbb{Z}_{p}. We must find k so that $a_{k} \cdot a=[1]_{p}$. Consider the list

$$
a_{1} \cdot a, \quad a_{2} \cdot a, \quad \ldots, \quad a_{p} \cdot a
$$

We claim these elements are all distinct (indeed, since \mathbb{Z}_{p} is an integral domain, if $a_{i} \cdot a=a_{j} \cdot a$, then cancelling the a 's yields $a_{i}=a_{j}$). This means every element of \mathbb{Z}_{p} appears somewhere in the list. In particular, $[1]_{p}$ appears somewhere in the list, meaning for some k, we have $a_{k} \cdot a=[1]_{p}$.
(g) Look carefully at the proof in part (e). What properties of \mathbb{Z}_{p} were used in the proof? Use this to complete the following (much more general) result.
Theorem (Theorem 3.9). Suppose R is a integral domain. If \qquad , then R is a field.
(h) Characterize (in terms of n) when \mathbb{Z}_{n} is a field, when \mathbb{Z}_{n} is an integral domain but not a field, and when \mathbb{Z}_{n} is neither an integral domain nor a field. State your characterization formally (as a theorem), and box it 3 times.
(D2) Ring arithmetic. Suppose $(R,+, \cdot)$ is a ring. Prove each of the following statements. Identify each ring axiom you use, and try to only use one axiom (or theorem) in each step.
(a) For every $a \in R,-(-a)=a$.
(b) For every $a, b \in R,(-a)(-b)=a b$.
(c) For every $a, b \in R,-(a+b)=(-a)+(-b)$.
(d) For every $a, b \in R,-(a-b)=(-a)+b$.
(e) If R has an identity $1_{R} \in R$, then for every $a \in R,(-1) a=-a$.
(f) If $a, b \in R$ are units, then $a b$ is a unit.
(g) If $a, b \in R$ with a and $a b$ both units, then b is a unit.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Suppose $(R,+, \cdot)$ is a ring. Prove each of the following statements. Identify each ring axiom you use, and try to only use one axiom (or theorem) in each step.
(a) For any $a, b, c, d \in R, a-b=c-d$ if and only if $a+d=b+c$.
(b) If $a, b \in R$ are both units, then $a b$ and a^{-1} are units as well.
(c) If R is commutative, $a, b \in R$ are zero divisors and $a b \neq 0_{R}$, then $a b$ is a zero divisor.
(R2) Suppose R is an integral domain. Prove that R is commutative if and only if for every $a, b \in R,(a b)^{2}=a^{2} b^{2}$ holds.
(R3) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If R is a ring and $a, b \in R$ are zero divisors, then $a+b$ is a zero divisor.
(b) If R is a ring and $a, b \in R$ are units, then $a+b$ is a unit.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Fix two rings R_{1} and R_{2}.
(a) Characterize the units of $R_{1} \times R_{2}$ in terms of the units of R_{1} and R_{2}.
(b) Characterize the zero divisors of $R_{1} \times R_{2}$ in terms of the zero divisors of R_{1} and R_{2}.
(S2) Fix a commutative ring R. An element $r \in R$ is nilpotent if $r^{n}=0$ for some $n \geq 1$.
(a) Prove that if $a, b \in R$ are nilpotent, then $a b$ is nilpotent.
(b) Prove that if $a, b \in R$ are nilpotent, then $a+b$ is nilpotent.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove there is exactly one way to fill the addition and multiplication tables for a 4-element field $F=\left\{0_{F}, 1_{F}, a, b\right\}$, and give the operation tables.

Hint: read the solution to last week's challenge problem!

