Fall 2018, Math 320: Week 6 Problem Set
 Due: Tuesday, October 9th, 2018
 Isomorphisms and Homomorphisms

Discussion problems. The problems below should be completed in class.
(D1) Homomorphisms. The goal of this problem is to get practice with homomorphisms.
(a) Determine whether each of the following maps is a ring homomorphism.
(i) $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\phi(a)=a+3$.
(ii) $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\phi(a)=2 a$.
(iii) $\phi: \mathbb{Z} \rightarrow M(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.
(iv) $\phi: R \rightarrow S$ given by $\phi\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$, where $R, S \subset M(\mathbb{R})$ are the set of all upper triangular and lower triangular matrices, respectively.
(b) Consider a ring homomorphism $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}[y]$ that sends $x \mapsto y+1$.
(i) Find all possible values of $\phi(0)$ and $\phi(1)$. Hint: consider $\phi(1 \cdot 1)$.
(ii) Find all possible values of $\phi\left(x^{3}\right), \phi(x+1)$, and $\phi\left(x^{2}+2 x+1\right)$.
(iii) What possible values can $\phi(1 / 2)$ be? What about $\phi(\sqrt{2})$?
(iv) Conjecture how many possible maps ϕ exist (you do not need to prove it).
(c) Fix a ring homomorphism $\phi: R \rightarrow S$. Prove that the image of ϕ is a subring of S.
(D2) Constructing isomorphisms. The goal of this problem is to get practice with isomorphisms.
(a) Prove each of the following.
(i) $\mathbb{R} \times \mathbb{R} \cong R$, where

$$
R=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

(ii) $\mathbb{Z}_{12} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
(iii) $\mathbb{Z} \cong(R, \oplus, \odot)$, where $R=\mathbb{Z}$,

$$
a \oplus b=a+b+1 \quad \text { and } \quad a \odot b=a b+a+b
$$

Hint: find 0_{R} and 1_{R}.
(iv) $\mathbb{Z} \cong R$, where $R=\{(a, a): a \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$.
(v) $R \cong T$, where R and S are any rings and $T=\{(r, 0): r \in R\} \subset R \times S$.
(b) Determine which of the following statements are true, and prove your assertions.
(i) $\mathbb{Z} \cong 2 \mathbb{Z}$, where $2 \mathbb{Z}$ denotes the set of even integers.
(ii) $\mathbb{Z}_{19} \cong \mathbb{Z}_{17}$.
(iii) \mathbb{Z}_{6} is isomorphic to some subring of $M(\mathbb{R})$.
(iv) $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \cong M(\mathbb{R})$.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Determine whether each of the following maps is a ring homomorphism.
(a) $\phi: \mathbb{Q} \rightarrow \mathbb{Q}$ given by $\phi(a)=\frac{1}{a^{2}+1}$.
(b) $\phi: \mathbb{Z} \rightarrow M(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$.
(c) $\phi: \mathbb{Z} \rightarrow M(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$.
(d) $\phi: \mathbb{Z}_{24} \rightarrow \mathbb{Z}_{6}$ given by $\phi\left([a]_{24}\right)=[a]_{6}$. Hint: be sure to check ϕ is well-defined!
(e) $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{12}$ given by $\phi\left([a]_{6}\right)=[a]_{12}$. Hint: be sure to check ϕ is well-defined!
(R2) Suppose $\phi: R \rightarrow S$ is a nonzero ring homomorphism (i.e. ϕ is not the map that sends every element of R to 0), R has a multiplicative identity, and S is an integral domain. Prove S has a multiplicative identity $1_{S} \in S$ and that $\phi\left(1_{R}\right)=1_{S}$.
(R3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) \mathbb{Z}_{9} is isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(b) The ring (L, \oplus, \odot) from Problem (R2) on Homework 4 is isomorphic to \mathbb{R}.

