Fall 2018, Math 320: Week 8 Problem Set Due: Tuesday, October 23rd, 2018 Polynomial Rings and Divisibility

Discussion problems. The problems below should be completed in class.

- (D1) The polynomial ring $\mathbb{Z}_n[x]$. The goal of this problem is to identify some "nice" properties that R[x] can fail to have when R is not a field.
 - (a) Which elements of $\mathbb{Z}_3[x]$ are units?
 - (b) Find a unit in $\mathbb{Z}_4[x]$ with positive degree. For which n is this possible in $\mathbb{Z}_n[x]$?
 - (c) What is the highest degree a zero-divisor can have in $\mathbb{Z}_6[x]$?
 - (d) Find an element of $\mathbb{Z}_6[x]$ that is **not** a zero-divisor, but whose leading coefficient **is** a zero-divisor of \mathbb{Z}_6 .
 - (e) Characterize the zero-divisors of $\mathbb{Z}_4[x]$. State your claim formally, and prove it!
 - (f) Find gcd(84, 32) using the Euclidean algorithm. Note: this is a week 1 question!
 - (g) Use the Euclidean algorithm to find the greatest common divisor of

$$f(x) = x^3 + 3x^2 + 2x - 1$$
 and $g(x) = x^3 - 2x + 1$

in $\mathbb{Q}[x]$. Do the same in $\mathbb{Z}_5[x]$.

- (h) Find the common divisor of 2x and 4x over \mathbb{Z}_6 of highest degree (note the Euclidean algorithm can't be used here).
- (D2) Similarities between F[x] and \mathbb{Z} . In what follows, assume F is a field.
 - (a) Below is the proof that for any $a, b, c \in \mathbb{Z}$, if $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Since $a \mid bc$ and gcd(a, b) = 1, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satisfying am = bc and ax + by = 1. As such, c = acx + bcy = acx + amy = a(cx + my), so $a \mid c$. \Box

Prove that for any $a(x), b(x), c(x) \in F[x]$, if $a(x) \mid b(x)c(x)$ and gcd(a(x), b(x)) = 1, then $a(x) \mid c(x)$.

(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with c > 0, then gcd(ca, cb) = c gcd(a, b). Identify where the hypothesis c > 0 is used.

Proof. Let d = gcd(a, b), so a = md and b = nd for some $m, n \in \mathbb{Z}$. This means ______ and _____, so $cd \mid ca$ and $cd \mid cb$. Moreover, ax + by = d for some $x, y \in \mathbb{Z}$, so ______, meaning cd = gcd(ca, cb).

- (c) State and prove an analogous result to part (b) for elements of F[x].
- (d) Prove that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then a(x) = Cb(x) for some $C \in F$. Hint: consider deg a(x) and deg b(x).
- (e) Prove that in part (d), if a(x) and b(x) are both monic, then a(x) = b(x).
- (f) Prove that if $a, b \in F$ with $a \neq b$, then gcd(x + a, x + b) = 1.

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) Consider the polynomials $f(x) = x^5 + 3x^4 7x^3 + 5x + 4$ and $g(x) = 2x^2 + x + 5$. Use the division algorithm to divide f(x) by g(x) over \mathbb{Z}_3 . Do the same over \mathbb{Z}_{11} . Do your answers tell you whether g(x) divides f(x) over \mathbb{Q} ?
- (R2) Find the greatest common divisor of $f(x) = x^6 + x^4 + x^2$ and $g(x) = x^4 + x^3 + x$ over \mathbb{Z}_3 using the Euclidean algorithm.
- (R3) Fix an integral domain R. Suppose that the division algorithm always holds for R[x] (that is, for every a(x), $b(x) \in R[x]$ with $b(x) \neq 0$, there exist unique q(x), $r(x) \in R[x]$ with deg $r(x) < \deg b(x)$ such that a(x) = q(x)b(x) + r(x) holds). Prove that R is a field.
- (R4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If R is a field, then R[x] is a field.
 - (b) For any a(x), $b(x) \in \mathbb{Z}[x]$ with $b(x) \neq 0$, there exist unique q(x), $r(x) \in \mathbb{Z}[x]$ with $\deg r(x) < \deg b(x)$ such that a(x) = q(x)b(x) + r(x).

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

(S1) Suppose R is a nonzero ring, and let $\phi: R[x] \to R$ denote the map given by

$$\phi(a_d x^a + \dots + a_1 x + a_0) = a_0$$

for any $a_0, a_1, \ldots, a_d \in R$. Prove ϕ is a surjective homomorphism, but not an isomorphism.

(S2) Fix a ring R, and let $D: \mathbb{R}[x] \to \mathbb{R}[x]$ denote the *derivative* map from calculus, that is,

$$D(a_d x^d + \dots + a_2 x^2 + a_1 x + a_0) = da_d x^{d-1} + \dots + 3a_3 x^2 + 2a_2 x + a_1$$

for all $a_0, a_1, \ldots, a_d \in \mathbb{R}$. Determine which of the isomorphism requirements D satisfies.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Let R be a commutative ring, and fix $a(x) \in R[x]$. Prove that there exists a unique homomorphism $\phi: R[x] \to R[x]$ satisfying $\phi(r) = r$ for every $r \in R$ and $\phi(x) = a(x)$.