Fall 2018, Math 320: Week 8 Problem Set
 Due: Tuesday, October 23rd, 2018
 Polynomial Rings and Divisibility

Discussion problems. The problems below should be completed in class.
(D1) The polynomial ring $\mathbb{Z}_{n}[x]$. The goal of this problem is to identify some "nice" properties that $R[x]$ can fail to have when R is not a field.
(a) Which elements of $\mathbb{Z}_{3}[x]$ are units?
(b) Find a unit in $\mathbb{Z}_{4}[x]$ with positive degree. For which n is this possible in $\mathbb{Z}_{n}[x]$?
(c) What is the highest degree a zero-divisor can have in $\mathbb{Z}_{6}[x]$?
(d) Find an element of $\mathbb{Z}_{6}[x]$ that is not a zero-divisor, but whose leading coefficient is a zero-divisor of \mathbb{Z}_{6}.
(e) Characterize the zero-divisors of $\mathbb{Z}_{4}[x]$. State your claim formally, and prove it!
(f) Find $\operatorname{gcd}(84,32)$ using the Euclidean algorithm. Note: this is a week 1 question!
(g) Use the Euclidean algorithm to find the greatest common divisor of

$$
f(x)=x^{3}+3 x^{2}+2 x-1 \quad \text { and } \quad g(x)=x^{3}-2 x+1
$$

in $\mathbb{Q}[x]$. Do the same in $\mathbb{Z}_{5}[x]$.
(h) Find the common divisor of $2 x$ and $4 x$ over \mathbb{Z}_{6} of highest degree (note the Euclidean algorithm can't be used here).
(D2) Similarities between $F[x]$ and \mathbb{Z}. In what follows, assume F is a field.
(a) Below is the proof that for any $a, b, c \in \mathbb{Z}$, if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Proof. Since $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satsifying $a m=b c$ and $a x+b y=1$. As such, $c=a c x+b c y=a c x+a m y=a(c x+m y)$, so $a \mid c$.

Prove that for any $a(x), b(x), c(x) \in F[x]$, if $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, then $a(x) \mid c(x)$.
(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with $c>0$, then $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$. Identify where the hypothesis $c>0$ is used.

Proof. Let $d=\operatorname{gcd}(a, b)$, so $a=m d$ and $b=n d$ for some $m, n \in \mathbb{Z}$. This means
\qquad and \qquad , so $c d \mid c a$ and $c d \mid c b$. Moreover, $a x+b y=d$ for some $x, y \in \mathbb{Z}$, so \qquad , meaning $c d=\operatorname{gcd}(c a, c b)$.
(c) State and prove an analogous result to part (b) for elements of $F[x]$.
(d) Prove that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then $a(x)=C b(x)$ for some $C \in F$. Hint: consider $\operatorname{deg} a(x)$ and $\operatorname{deg} b(x)$.
(e) Prove that in part (d), if $a(x)$ and $b(x)$ are both monic, then $a(x)=b(x)$.
(f) Prove that if $a, b \in F$ with $a \neq b$, then $\operatorname{gcd}(x+a, x+b)=1$.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Consider the polynomials $f(x)=x^{5}+3 x^{4}-7 x^{3}+5 x+4$ and $g(x)=2 x^{2}+x+5$. Use the division algorithm to divide $f(x)$ by $g(x)$ over \mathbb{Z}_{3}. Do the same over \mathbb{Z}_{11}. Do your answers tell you whether $g(x)$ divides $f(x)$ over \mathbb{Q} ?
(R2) Find the greatest common divisor of $f(x)=x^{6}+x^{4}+x^{2}$ and $g(x)=x^{4}+x^{3}+x$ over \mathbb{Z}_{3} using the Euclidean algorithm.
(R3) Fix an integral domain R. Suppose that the division algorithm always holds for $R[x]$ (that is, for every $a(x), b(x) \in R[x]$ with $b(x) \neq 0$, there exist unique $q(x), r(x) \in R[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ such that $a(x)=q(x) b(x)+r(x)$ holds). Prove that R is a field.
(R4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If R is a field, then $R[x]$ is a field.
(b) For any $a(x), b(x) \in \mathbb{Z}[x]$ with $b(x) \neq 0$, there exist unique $q(x), r(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ such that $a(x)=q(x) b(x)+r(x)$.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Suppose R is a nonzero ring, and let $\phi: R[x] \rightarrow R$ denote the map given by

$$
\phi\left(a_{d} x^{d}+\cdots+a_{1} x+a_{0}\right)=a_{0}
$$

for any $a_{0}, a_{1}, \ldots, a_{d} \in R$. Prove ϕ is a surjective homomorphism, but not an isomorphism.
(S2) Fix a ring R, and let $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ denote the derivative map from calculus, that is,

$$
D\left(a_{d} x^{d}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}\right)=d a_{d} x^{d-1}+\cdots+3 a_{3} x^{2}+2 a_{2} x+a_{1}
$$

for all $a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{R}$. Determine which of the isomorphism requirements D satisfies.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let R be a commutative ring, and fix $a(x) \in R[x]$. Prove that there exists a unique homomorphism $\phi: R[x] \rightarrow R[x]$ satisfying $\phi(r)=r$ for every $r \in R$ and $\phi(x)=a(x)$.

