Fall 2018, Math 320: Week 9 Problem Set Due: Tuesday, October 30th, 2018Polynomial Factorization and Irreducibility

Discussion problems. The problems below should be completed in class.

(D1) Factoring polynomials over \mathbb{Z}_n .

- (a) Compare your answers to (P1). Over each ring, compare deg f(x) to the number of roots, and check these against Corollary 4.17.
- (b) Factor $x^3 + 3x + 1$ and $x^3 + 3x^2 + 2x + 4$ over \mathbb{Z}_5 as products of irreducibles. Hint: we can use the root theorem when the degree is at most 3.
- (c) Factor $x^4 + x^3 + 2x^2 + 2x + 1$ over \mathbb{Z}_3 . Does it suffice to look for roots?
- (d) Factor $x^5 + 1$ over \mathbb{Z}_5 . Do the same over \mathbb{Z}_3 .
- (e) Factor $x^4 + 4$ over \mathbb{Z}_5 . Does it factor over \mathbb{Q} ? (The answer may surprise you!)
- (f) Let $f(x) = x^3 + 2x + 1$. Find a polynomial $g(x) \neq f(x)$ with f(a) = g(a) for all $a \in \mathbb{Z}_3$. Are f(x) and g(x) the same element of $\mathbb{Z}_3[x]$?
- (g) Find all roots of 3x + 3 over \mathbb{Z}_6 . Why is this surprising?
- (h) Find a linear (i.e. degree 1) polynomial over \mathbb{Z}_6 with no solutions.
- (D2) Similarities between F[x] and \mathbb{Z} . In what follows, assume F is a field.
 - (a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Since $a \mid bc$ and gcd(a, b) = 1, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satisfying am = bc and ax + by = 1. As such, c = acx + bcy = acx + amy = a(cx + my), so $a \mid c$. \Box

Prove if $a(x), b(x), c(x) \in F[x]$ with a(x) | b(x)c(x) and gcd(a(x), b(x)) = 1, then a(x) | c(x).

(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with c > 0, then gcd(ca, cb) = c gcd(a, b). Identify where the hypothesis c > 0 is used.

Proof. Let d = gcd(a, b), so a = md and b = nd for some $m, n \in \mathbb{Z}$. This means ______ and _____, so $cd \mid ca$ and $cd \mid cb$. Moreover, ax + by = d for some $x, y \in \mathbb{Z}$, so ______, meaning cd = gcd(ca, cb).

- (c) State and prove an analogous result to part (b) for elements of F[x].
- (d) Complete the following proof that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then b(x) = Ca(x) for some $C \in F$.

Proof. Since a(x) | b(x), we have b(x) = a(x)f(x) for some $f(x) \in F[x]$, and since b(x) | a(x), we have _____. This means

 $\deg b(x) = \deg f(x) + \deg a(x) \ge \deg a(x) = \underline{\qquad} \ge \deg b(x),$

so deg b(x) = deg and deg f(x) = 0. Choosing C = completes the proof. \Box

(e) Fill in the details in the proof that if $a, b \in F$ with $a \neq b$, then gcd(x + a, x + b) = 1.

Proof Sketch. Suppose $f(x) \in F[x]$ is monic with $f(x) \mid (x+a)$ and $f(x) \mid (x+b)$. Either deg f(x) = 0 or deg f(x) = 1. If deg f(x) = 1, then f(x) = x + c for some $c \in F$, which is impossible since $a \neq b$. This means deg f(x) = 0. **Required problems.** As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) Factor $f(x) = x^3 + 6x^2 + 1$ over \mathbb{Z}_3 , \mathbb{Z}_5 , and \mathbb{Z}_7 . Does it factor over \mathbb{Q} ?
- (R2) Factor $f(x) = x^5 + 4x^4 + 8x^3 + 11x$ over \mathbb{Q} . Hint: first try to factor f(x) over \mathbb{Z}_3 and \mathbb{Z}_5 .
- (R3) Find all monic irreducible polynomials in $\mathbb{Z}_3[x]$ of degree at most 2.
- (R4) Factor $x^4 x$ and $x^8 x$ over \mathbb{Z}_2 .

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

- (S1) Consider the set $R = \{a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Q}[x] : a_0 \in \mathbb{Z}\}$ of polynomials over \mathbb{Q} with integer constant term.
 - (a) Prove that R is a subring of $\mathbb{Q}[x]$.
 - (b) Show that some elements of R cannot be factored into a finite product of irreducibles. Hint: consider the element f(x) = x.
- (S2) Consider the set $R = \{a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Q}[x] : a_1 = 0\}$ of polynomials over \mathbb{Q} with no linear term.
 - (a) Prove that R is a subring of $\mathbb{Q}[x]$.
 - (b) Show that there are elements of R that can be factored as a product of irreducibles in more than one distinct way. Hint: consider the element $f(x) = x^6$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Suppose p > 0 is prime, and fix a polynomial $f(x) \in \mathbb{Z}_p[x]$. Prove that there are infinitely many polynomials g(x) such that f(a) = g(a) for all $a \in \mathbb{Z}_p$.