Fall 2018, Math 320: Week 9 Problem Set

Due: Tuesday, October 30th, 2018 Polynomial Factorization and Irreducibility

Discussion problems. The problems below should be completed in class.
(D1) Factoring polynomials over \mathbb{Z}_{n}.
(a) Compare your answers to (P1). Over each ring, compare $\operatorname{deg} f(x)$ to the number of roots, and check these against Corollary 4.17.
(b) Factor $x^{3}+3 x+1$ and $x^{3}+3 x^{2}+2 x+4$ over \mathbb{Z}_{5} as products of irreducibles. Hint: we can use the root theorem when the degree is at most 3 .
(c) Factor $x^{4}+x^{3}+2 x^{2}+2 x+1$ over \mathbb{Z}_{3}. Does it suffice to look for roots?
(d) Factor $x^{5}+1$ over \mathbb{Z}_{5}. Do the same over \mathbb{Z}_{3}.
(e) Factor $x^{4}+4$ over \mathbb{Z}_{5}. Does it factor over \mathbb{Q} ? (The answer may surprise you!)
(f) Let $f(x)=x^{3}+2 x+1$. Find a polynomial $g(x) \neq f(x)$ with $f(a)=g(a)$ for all $a \in \mathbb{Z}_{3}$. Are $f(x)$ and $g(x)$ the same element of $\mathbb{Z}_{3}[x]$?
(g) Find all roots of $3 x+3$ over \mathbb{Z}_{6}. Why is this surprising?
(h) Find a linear (i.e. degree 1) polynomial over \mathbb{Z}_{6} with no solutions.
(D2) Similarities between $F[x]$ and \mathbb{Z}. In what follows, assume F is a field.
(a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Proof. Since $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satsifying $a m=b c$ and $a x+b y=1$. As such, $c=a c x+b c y=a c x+a m y=a(c x+m y)$, so $a \mid c$.

Prove if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, then $a(x) \mid c(x)$.
(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with $c>0$, then $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$. Identify where the hypothesis $c>0$ is used.

Proof. Let $d=\operatorname{gcd}(a, b)$, so $a=m d$ and $b=n d$ for some $m, n \in \mathbb{Z}$. This means
\qquad and \qquad , so $c d \mid c a$ and $c d \mid c b$. Moreover, $a x+b y=d$ for some $x, y \in \mathbb{Z}$,
so \qquad , meaning $c d=\operatorname{gcd}(c a, c b)$.
(c) State and prove an analogous result to part (b) for elements of $F[x]$.
(d) Complete the following proof that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then $b(x)=C a(x)$ for some $C \in F$.

Proof. Since $a(x) \mid b(x)$, we have $b(x)=a(x) f(x)$ for some $f(x) \in F[x]$, and since $b(x) \mid a(x)$, we have \qquad . This means

$$
\operatorname{deg} b(x)=\operatorname{deg} f(x)+\operatorname{deg} a(x) \geq \operatorname{deg} a(x)=\quad \geq \operatorname{deg} b(x)
$$

so $\operatorname{deg} b(x)=\operatorname{deg}$ \qquad and $\operatorname{deg} f(x)=0$. Choosing $C=$ \qquad completes the proof.
(e) Fill in the details in the proof that if $a, b \in F$ with $a \neq b$, then $\operatorname{gcd}(x+a, x+b)=1$.

Proof Sketch. Suppose $f(x) \in F[x]$ is monic with $f(x) \mid(x+a)$ and $f(x) \mid(x+b)$. Either $\operatorname{deg} f(x)=0$ or $\operatorname{deg} f(x)=1$. If $\operatorname{deg} f(x)=1$, then $f(x)=x+c$ for some $c \in F$, which is impossible since $a \neq b$. This means $\operatorname{deg} f(x)=0$.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Factor $f(x)=x^{3}+6 x^{2}+1$ over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$, and \mathbb{Z}_{7}. Does it factor over \mathbb{Q} ?
(R2) Factor $f(x)=x^{5}+4 x^{4}+8 x^{3}+11 x$ over \mathbb{Q}. Hint: first try to factor $f(x)$ over \mathbb{Z}_{3} and \mathbb{Z}_{5}.
(R3) Find all monic irreducible polynomials in $\mathbb{Z}_{3}[x]$ of degree at most 2.
(R4) Factor $x^{4}-x$ and $x^{8}-x$ over \mathbb{Z}_{2}.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Consider the set $R=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[x]: a_{0} \in \mathbb{Z}\right\}$ of polynomials over \mathbb{Q} with integer constant term.
(a) Prove that R is a subring of $\mathbb{Q}[x]$.
(b) Show that some elements of R cannot be factored into a finite product of irreducibles. Hint: consider the element $f(x)=x$.
(S2) Consider the set $R=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[x]: a_{1}=0\right\}$ of polynomials over \mathbb{Q} with no linear term.
(a) Prove that R is a subring of $\mathbb{Q}[x]$.
(b) Show that there are elements of R that can be factored as a product of irreducibles in more than one distinct way. Hint: consider the element $f(x)=x^{6}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $p>0$ is prime, and fix a polynomial $f(x) \in \mathbb{Z}_{p}[x]$. Prove that there are infinitely many polynomials $g(x)$ such that $f(a)=g(a)$ for all $a \in \mathbb{Z}_{p}$.

