Fall 2018, Math 320: Week 10 Problem Set
 Due: Tuesday, November 6th, 2018
 Congruence Classes in $F[x]$

Discussion problems. The problems below should be completed in class.
(D1) Arithmetic modulo $p(x)$. Assume F is a field and $p(x) \in F[x]$.
(a) Determine whether $x^{3}+2 x+1 \equiv x^{2}+1 \bmod \left(x^{2}-1\right)$ over \mathbb{Q}.
(b) Use the fact that $\left[x^{2}\right]=[1]$ in $\mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ to determine whether $\left[x^{3}+2 x+1\right]=\left[x^{2}+1\right]$.
(c) Demonstrate $[x-1] \in \mathbb{Q}[x] /\left\langle x^{2}-2 x+1\right\rangle$ is a zero-divisor.
(d) Demonstrate $[x-2] \in \mathbb{Q}[x] /\left\langle x^{2}-2 x+1\right\rangle$ is a unit.
(e) Consider the ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+1\right\rangle$.
(i) List every element of R. Identify 0_{R} and 1_{R}.
(ii) Write down the operation tables for R.
(iii) Is R an integral domain? Is R a field?
(f) Consider the ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$.
(i) List every element in R. Identify 0_{R} and 1_{R}.
(ii) Write down the operation tables for R.
(iii) Is R an integral domain? Is R a field?
(D2) Reducibility and quotient rings. Unless otherwise stated, assume F is an arbitrary field.
(a) Suppose $p(x) \in F[x]$ is reducible. Prove that $F[x] /\langle p(x)\rangle$ is not an integral domain. Hint: look at parts (c) and (e) of Problem (D1).
(b) Prove or disprove: in $F[x] /\langle p(x)\rangle$, if $[a(x)][b(x)]=[a(x)][c(x)]$, then $[b(x)]=[c(x)]$. Hint: consider the analogous question in \mathbb{Z}_{n} first.
(c) Locate and correct the error in the following proof that if $p(x) \in F[x]$ is irreducible, then $R=F[x] /\langle p(x)\rangle$ is a field.

Proof. We must show each $[f(x)] \in R$ with $[f(x)] \neq[0]$ has a multiplicative inverse. Since $p(x)$ is irreducible, its only divisors are 1 and $p(x)$, and since $[f(x)] \neq[0]$, we have $p(x) \nmid f(x)$. This means $\operatorname{gcd}(f(x), p(x))=1$, so $1=f(x) u(x)+p(x) v(x)$ for some $u(x), v(x) \in F[x]$. As such,

$$
[f(x)][u(x)]=[f(x)][u(x)]+[p(x)][v(x)]=[f(x) u(x)+p(x) v(x)]=[1]
$$

which completes the proof.
(d) Relate parts (a) and (c) to familiar theorems for \mathbb{Z}_{n}.
(e) Fix $a \in F$, and let $R=F[x] /\langle x-a\rangle$. Fill in the details in the proof below that $R \cong F$.

Proof sketch. The map $\phi: F \rightarrow R$ given by $b \mapsto[b]$ is injective since $\operatorname{deg}(x-a)=1$, and surjective since for each element $f(x)=b_{d} x^{d}+\cdots+b_{1} x+b_{0} \in F[x]$ we have

$$
[f(x)]=\left[b_{d} a^{d}+\cdots+b_{1} a+b_{0}\right] \in R .
$$

Verifying ϕ is a homomorphism completes the proof.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Determine whether $x^{3}+x^{2} \equiv x \bmod \left(x^{2}+x+1\right)$ over \mathbb{Z}_{2} Do the same over \mathbb{Z}_{3}.
(R2) Every element of $R=\mathbb{Q}[x] /\left\langle x^{2}+2 x-1\right\rangle$ can be written as $[a x+b]$ for some $a, b \in \mathbb{Q}$. If $[a x+b][c x+d]=[r x+t]$ with $a, b, c, d, r, t \in \mathbb{Q}$, find r and t in terms of the others.
(R3) Let $R=\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. Find an element $r \in R$ with the property that every nonzero element of R is a power of r (that is, every nonzero element of R occurs in the list r, r^{2}, r^{3}, \ldots).
(R4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) The element $[x+1] \in \mathbb{Q}[x] /\left\langle x^{2}+x\right\rangle$ is a zero-divisor.
(b) The element $[x+1] \in \mathbb{Q}[x] /\left\langle x^{2}+x\right\rangle$ is a unit.
(c) If F is a field, $p(x) \in F[x]$, and $R=F[x] /\langle p(x)\rangle$, then R is a field.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Let $R=\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. In Problem (S1) from Week 4, it was shown that R is a subring of \mathbb{R} (you may assume that fact for this problem). Prove the map $R \rightarrow \mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$ given by $a+b \sqrt{2} \mapsto[a+b x]$ is an isomorphism.
(S2) Prove the map $\mathbb{C} \rightarrow \mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$ given by $a+b i \mapsto[a+b x]$ is an isomorphism.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Characterize the units and zero-divisors of $\mathbb{Q}[x] /\left\langle x^{2}\right\rangle$.

