Fall 2018, Math 320: Week 11 Problem Set
 Due: Tuesday, November 13th, 2018
 Ideals and Quotient Rings

Discussion problems. The problems below should be completed in class.
(D1) Examples of ideals.
(a) Determine which subsets of $R=\mathbb{Z}_{4}$ are ideals. Do the same for \mathbb{Z}_{3}.
(b) Find all possible generators for $\langle 2\rangle \subset \mathbb{Z}_{12}$. Do the same for $\langle 6\rangle \subset \mathbb{Z}$.
(c) Suppose R is a commutative ring and $a_{1}, \ldots, a_{k} \in R$. Fill in the blanks in the proof

$$
\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{b_{1} a_{1}+\cdots+b_{k} a_{k}: b_{1}, \ldots, b_{k} \in R\right\}
$$

is an ideal.
Proof. Using Theorem 6.1, we see for any $b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{k} \in R$, we have

$$
\left(b_{1} a_{1}+\cdots+b_{k} a_{k}\right)-\left(c_{1} a_{1}+\cdots+c_{k} a_{k}\right)=
$$

and for any $r \in R$, we have

$$
r\left(b_{1} a_{1}+\cdots+b_{k} a_{k}\right)=
$$

as desired.
(d) Find an integer a so that $\langle a\rangle=\langle 6,10\rangle \subset \mathbb{Z}$. Be sure to show containment both ways!
(e) Determine whether each of the following sets I is an ideal in $R=\mathbb{Z}_{3}[x]$.
(i) $I=\{f \in R: f(0)=0\}$.
(ii) $I=\{f \in R: f(0)=1\}$.
(iii) $I=\{f \in R: f(1)=0\}$.
(f) Prove or disprove: if R is a ring, then the set I of zero-divisors is an ideal.
(g) Prove or disprove: if R is a ring, $I \subset R$ is an ideal, and $a \in I$ is a unit, then $I=\langle 1\rangle$.
(D2) Properties of ideals. Assume R is a commutative ring and $I \subset R$ is an ideal. In each proof, mark in color where ideal requirements are used.
(a) In $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$, show that $\left[x^{4}+x^{3}+x^{2}+1\right]=[0]$ using the fact that $\left[x^{3}+x+1\right]=[0]$. With $I=\left\langle x^{3}+x+1\right\rangle$, rewrite the same steps using coset notation (e.g. $\left.\left(x^{3}+x+1\right)+I\right)$.
(b) In this part, you will prove that equivalence modulo I is an equivalence relation on R.
(i) Prove $a \equiv a \bmod I$ for every $a \in R$ (reflexivity).
(ii) Prove if $a \equiv b \bmod I$, then $b \equiv a \bmod I$ (symmetry).
(iii) Prove if $a \equiv b \bmod I$ and $b \equiv c \bmod I$, then $a \equiv c \bmod I$ (transitivity).
(c) Locate and correct the errors in the following proof that if $r+I=r^{\prime}+I$ and $t+I=t^{\prime}+I$, then $(r t)+I=\left(r^{\prime} t^{\prime}\right)+I$ (in other words, multiplication of cosets is well defined).

Proof. We must show $r t-r^{\prime} t^{\prime} \in I$. Since $r+I=r^{\prime}+I$, we have $r-r^{\prime} \in I$, and since $t+I=t^{\prime}+I$, we have $t-t^{\prime} \in I$. As such,

$$
(r t)-(r t)=r t-r t+r t-r t=(r-r) t+r(t-t) \in I
$$

as desired.
(d) State and prove a result analogous to part (c) that addition of cosets is well-defined.
(e) In order for I to be an ideal, we require $r a \in I$ for every $a \in I$ and $r \in I$. If instead, we only assume I is closed under multiplication, which of the above proofs breaks?

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.

All rings are commutative unless otherwise stated.
(R1) Find a single generator for $I_{1}=\langle 24,34\rangle \subset \mathbb{Z}$ (that is, find some $a \in I_{1}$ so that $I_{1}=\langle a\rangle$). Do the same for $I_{2}=\left\langle x^{3}+2 x, x^{2}+x\right\rangle \subset \mathbb{Q}[x]$.
(R2) Suppose R is a ring. An element $r \in R$ is nilpotent if $r^{k}=0$ for some $k \geq 1$ (that is, if some power of r is 0). Prove that the set N of all nilpotent elements of R is an ideal of R. (Fun fact: N is called the nilradical of R). Hint: you may cite old homework problems!
(R3) Suppose R and S are rings, and that $\phi: R \rightarrow S$ is a homomorphism. Prove that the set

$$
K=\left\{a \in R: \phi(a)=0_{S}\right\}
$$

is an ideal of R.
(R4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $I, J \subset R$ are ideals, then $I \cap J$ is an ideal.
(b) If $I, J \subset R$ are ideals, then $I \cup J$ is an ideal.
(c) If $I, J \subset R$ are ideals, then $I+J=\{a+b: a \in I, b \in J\}$ is an ideal.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Consider the ring

$$
R=\{a+b \sqrt{5}: a, b \in \mathbb{Q}\} \subset \mathbb{R}
$$

(you may assume that R is a subring of \mathbb{R}). Locate an ideal $I \subset \mathbb{Q}[x]$ so that $\mathbb{Q}[x] / I \cong R$.

