Due: Tuesday, December 4th, 2018
 Introduction to Groups

Discussion problems. The problems below should be completed in class.
(D1) Checking group axioms. Determine whether each of the following sets G forms a group under the given operation $*$.
(a) $G=\mathbb{Z} ; a * b=a \cdot b$.
(b) $G=\mathbb{Z} ; a * b=a-b$.
(c) G is the set of nonzero rational numbers; $a * b=a / b$.
(d) $G=\mathbb{Z}_{\geq 0} ; a * b=a+b$.
(e) $G=\mathbb{Z}_{\geq 1} ; a * b=a b$.
(f) $G=\mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(g) $G=\{1,3,7,9\} \subset \mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(h) $G=\{1,3,7,9\} \subset \mathbb{Z}_{9} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{9}).
(i) $G=\{1,2,4,5,7,8\} \subset \mathbb{Z}_{9} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{9}).
(j) $G=\left\{x, 1-x, \frac{1}{x}, \frac{1}{1-x}, \frac{x}{1-x}, \frac{1-x}{x}\right\} ; f(x) * g(x)=f(g(x))$.
$(\mathrm{k}) G$ is the set of functions $\mathbb{R} \rightarrow \mathbb{R}$ of the form $f(x)=a x+b$ with $a, b \in \mathbb{R}$ and $a \neq 0$ (that is, $f(x)=2 x+3$ and $f(x)=5 x$ lie in G, but not $f(x)=x^{2}+2$ and $f(x)=0$); $f(x) * g(x)=f(g(x))$.
(l) $G=\mathbb{R} \times \mathbb{R} ;(a, b) *(c, d)=(a c, b d)$.
$(\mathrm{m}) G=\mathbb{R}^{*} \times \mathbb{R}$ where \mathbb{R}^{*} denotes the set of nonzero real numbers; $(a, b) *(c, d)=(a c, b c+d)$.
(D2) Graph automorphisms. Recall that an automorphism of a graph H is a permutation σ of the vertices of H such that $\sigma(a)$ and $\sigma(b)$ are connected whenever a and b are connected.
For each of the following graphs H, find $\mathbb{A}(H)$, the group of all automorphisms of H. For each, identify which "key" group from Tuesday's lecture $\mathbb{A}(H)$ is isomorphic to.
(a) The cycle graph $G=C_{n}$ for $n \geq 3$.
(b) The complete graph $G=K_{n}$ for $n \geq 2$.
(c) The star graph $G=T_{n}$ for $n \geq 3$.
(d) The wheel graph $G=W_{n}$ for $n \geq 3$.

Use the following graphs as a guide for this problem.

Wheel graph W_{8}

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Consider the dihedral group $D_{3}=\left\{e, r, r^{2}, f_{1}, f_{2}, f_{3}\right\}$, the symmetry group of the triangle with vertices labeled $1,2,3$ when read clockwise, where r denotes a 120° clockwise rotation and each f_{i} denotes the flip leaving vertex i fixed.
(a) Write each element of D_{3} in permutation notation, e.g.

$$
f_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

(b) Write out the operation table for D_{3}.
(R2) Each of the following sets of 2×2 real matrices does not form a group under matrix multiplication. Determine why (you may assume matrix multiplication is associative).
(a) $M=M(\mathbb{R})$ (that is, the set of all 2×2 matrices with real entries).
(b) $M=\left\{\left(\begin{array}{ll}a & b \\ -b & a\end{array}\right): a, b \in \mathbb{R}\right.$ with $a \neq 0$ and $\left.b \neq 0\right\}$.
(R3) Determine whether each of the following sets G form a group under the given operation *. If yes, prove they form a group. If no, give a specific example demonstrating that one of the axioms is violated.
(a) G is the set of nonzero real numbers; $a * b=|a| \cdot b$.
(b) $G=\mathbb{R} ; a * b=a+b+3$.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

For this week only, you are not required to give a complete argument. Instead, simply state your answer (a short expression for (S1), a picture for (S2)) and give a one sentence explanation.
(S1) Suppose H_{1} and H_{2} are graphs, and suppose H is the disjoint union of H_{1} and H_{2}. Express $\mathbb{A}(H)$ in terms of $\mathbb{A}\left(H_{1}\right)$ and $\mathbb{A}\left(H_{2}\right)$.
(S2) Identify a graph H whose automorphism group $\mathbb{A}(H)$ is isomorphic to $\left(\mathbb{Z}_{5},+\right)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $(G, *)$ is a group, where $G=\{0,1,2,3,4,5,6,7\}$ and $*$ is an operation satisfying
(i) $a * b \leq a+b$ for every $a, b \in G$, and
(ii) $a * a=0$ for every $a \in G$.

Write out the operation table for G.

