Fall 2018, Math 320: Week 14 Problem Set Due: Tuesday, December 4th, 2018 Introduction to Groups

Discussion problems. The problems below should be completed in class.

- (D1) Checking group axioms. Determine whether each of the following sets G forms a group under the given operation *.
 - (a) $G = \mathbb{Z}; a * b = a \cdot b.$
 - (b) $G = \mathbb{Z}; a * b = a b.$
 - (c) G is the set of nonzero rational numbers; a * b = a/b.
 - (d) $G = \mathbb{Z}_{>0}; a * b = a + b.$
 - (e) $G = \mathbb{Z}_{\geq 1}$; a * b = ab.
 - (f) $G = \mathbb{Z}_{10}$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (g) $G = \{1, 3, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (h) $G = \{1, 3, 7, 9\} \subset \mathbb{Z}_9; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_9).
 - (i) $G = \{1, 2, 4, 5, 7, 8\} \subset \mathbb{Z}_9$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_9).
 - (j) $G = \left\{ x, 1-x, \frac{1}{x}, \frac{1}{1-x}, \frac{x}{1-x}, \frac{1-x}{x} \right\}; f(x) * g(x) = f(g(x)).$
 - (k) G is the set of functions $\mathbb{R} \to \mathbb{R}$ of the form f(x) = ax + b with $a, b \in \mathbb{R}$ and $a \neq 0$ (that is, f(x) = 2x + 3 and f(x) = 5x lie in G, but not $f(x) = x^2 + 2$ and f(x) = 0); f(x) * g(x) = f(g(x)).
 - (1) $G = \mathbb{R} \times \mathbb{R}; (a, b) * (c, d) = (ac, bd).$
 - (m) $G = \mathbb{R}^* \times \mathbb{R}$ where \mathbb{R}^* denotes the set of nonzero real numbers; (a, b) * (c, d) = (ac, bc+d).
- (D2) Graph automorphisms. Recall that an automorphism of a graph H is a permutation σ of the vertices of H such that $\sigma(a)$ and $\sigma(b)$ are connected whenever a and b are connected.

For each of the following graphs H, find $\mathbb{A}(H)$, the group of all automorphisms of H. For each, identify which "key" group from Tuesday's lecture $\mathbb{A}(H)$ is isomorphic to.

- (a) The cycle graph $G = C_n$ for $n \ge 3$.
- (b) The complete graph $G = K_n$ for $n \ge 2$.
- (c) The star graph $G = T_n$ for $n \ge 3$.
- (d) The wheel graph $G = W_n$ for $n \ge 3$.

Use the following graphs as a guide for this problem.

Cycle graph C_8

Complete graph K_5

Wheel graph W_8

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) Consider the dihedral group $D_3 = \{e, r, r^2, f_1, f_2, f_3\}$, the symmetry group of the triangle with vertices labeled 1, 2, 3 when read clockwise, where r denotes a 120° clockwise rotation and each f_i denotes the flip leaving vertex i fixed.
 - (a) Write each element of D_3 in permutation notation, e.g.

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

- (b) Write out the operation table for D_3 .
- (R2) Each of the following sets of 2×2 real matrices does **not** form a group under matrix multiplication. Determine why (you may assume matrix multiplication is associative).
 - (a) $M = M(\mathbb{R})$ (that is, the set of **all** 2×2 matrices with real entries).

(b)
$$M = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \text{ with } a \neq 0 \text{ and } b \neq 0 \right\}.$$

- (R3) Determine whether each of the following sets G form a group under the given operation *. If yes, prove they form a group. If no, give a specific example demonstrating that one of the axioms is violated.
 - (a) G is the set of nonzero real numbers; $a * b = |a| \cdot b$.
 - (b) $G = \mathbb{R}; a * b = a + b + 3.$

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

For this week only, you are not required to give a complete argument. Instead, simply state your answer (a short expression for (S1), a picture for (S2)) and give a one sentence explanation.

- (S1) Suppose H_1 and H_2 are graphs, and suppose H is the disjoint union of H_1 and H_2 . Express $\mathbb{A}(H)$ in terms of $\mathbb{A}(H_1)$ and $\mathbb{A}(H_2)$.
- (S2) Identify a graph H whose automorphism group $\mathbb{A}(H)$ is isomorphic to $(\mathbb{Z}_5, +)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

- (C1) Suppose (G, *) is a group, where $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and * is an operation satisfying
 - (i) $a * b \le a + b$ for every $a, b \in G$, and
 - (ii) a * a = 0 for every $a \in G$.

Write out the operation table for G.