Fall 2018, Math 320: Week 15 Problem Set
 Due: Tuesday, December 11th, 2018 Permutation Groups

Discussion problems. The problems below should be completed in class.
(D1) Working with permutations. Consider the following permutations.

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 2 & 4 & 1
\end{array}\right) \quad \tau=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 6 & 3 & 8 & 2 & 5 & 7
\end{array}\right) \quad \alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 2 & 8 & 6 & 1 & 4 & 7 & 3
\end{array}\right)
$$

(a) Write each of the above permutations as a product of disjoint cycles.
(b) Write each of the above permutations as a product of 2-cycles. Is there more than one way to do this?
(c) Determine which of the above permutations are even, and which are odd.
(d) Is it possible to write σ or τ as a product of disjoint 2-cycles?
(e) Write σ^{-1}, τ^{-1}, and α^{-1} as a products of disjoint cycles, and as products of 2-cycles. Hint: you have already written σ, τ, and α in these forms!
(f) Determine whether σ^{91} is even or odd.
(g) Determine the smallest integer $m>0$ for which α^{m} equals the identity permutation. Do the same for σ and τ.
(D2) Group elements as permutations. The goal of this problem is to see the following in action.
Theorem. Every finite group G with $|G|=n$ is isomorphic to a subgroup of S_{n}.
(a) Draw the triangle with vertices labeled $1,2,3$. Write each element of D_{3} as a permutation of the vertex labels.
(b) Conclude that D_{3} is isomorphic to a subgroup of S_{3}.
(c) Which elements of D_{3} correspond to odd permutations in S_{3} ?
(d) The goal of the next few parts is to identify a subgroup of S_{6} isomorphic to D_{3}. Choose a labeling of the elements of D_{3} as $a_{1}, a_{2}, \ldots, a_{6}$ (you may do this in any way you wish).
(e) Let $r \in D_{3}$ denote clockwise rotation by 120°. Define a permutation $\sigma \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=a_{i} r$. Verify that σ is indeed a permutation by writing it in permutation notation.
(f) Repeat the previous part for each $a \in D_{3}$ (that is, define a permutation $\sigma_{a} \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=a_{i} a$). Write down all 6 resulting permutations (you may want to "divide and conquer" amongst your groupmates to save time!).
(g) Verify in three examples that for any $a, b \in D_{3}$, the permutation corresponding to $a b$ equals the product of the permutations corresponding to a and b.
(h) Which elements of D_{3} correspond to odd permutations in S_{6} ? Does this match part (c)?
(i) Using the ideas above, find a subgroup of S_{5} isomorphic to \mathbb{Z}_{5}.
(j) Using the ideas above, find a subgroup of S_{4} isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Write σ and τ below as products of disjoint cycles, and as products of 2-cycles. Do the same for σ^{-1} and τ^{-1}.

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2
\end{array}\right) \quad \tau=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 7 & 2 & 8 & 5 & 1 & 6
\end{array}\right)
$$

(R2) Let B_{n} denote the set of odd permutations in S_{n}. Define $f: A_{n} \rightarrow B_{n}$ by $f(\sigma)=\sigma \cdot(12)$.
(a) Prove f is injective.
(b) Prove f is surjective.
(c) Prove that $\left|A_{n}\right|=n!/ 2$ (hint: what do parts (a) and (b) imply about $\left|A_{n}\right|$ and $\left|B_{n}\right|$?).
(R3) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) The set B_{n} of odd permutations in S_{n} is a subgroup of S_{n}.
(b) There is a subgroup of S_{36} isomorphic to D_{18}.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove that (12) and $(123 \cdots n)$ generate S_{n}.

