Fall 2018, Math 320: Week 15 Problem Set Due: Tuesday, December 11th, 2018 Permutation Groups

Discussion problems. The problems below should be completed in class.

(D1) Working with permutations. Consider the following permutations.

$$\sigma = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \\ 3 \ 5 \ 2 \ 4 \ 1 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 4 \ 1 \ 6 \ 3 \ 8 \ 2 \ 5 \ 7 \end{pmatrix} \quad \alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 5 \ 2 \ 8 \ 6 \ 1 \ 4 \ 7 \ 3 \end{pmatrix}$$

- (a) Write each of the above permutations as a product of disjoint cycles.
- (b) Write each of the above permutations as a product of 2-cycles. Is there more than one way to do this?
- (c) Determine which of the above permutations are even, and which are odd.
- (d) Is it possible to write σ or τ as a product of disjoint 2-cycles?
- (e) Write σ^{-1} , τ^{-1} , and α^{-1} as a products of disjoint cycles, and as products of 2-cycles. Hint: you have already written σ , τ , and α in these forms!
- (f) Determine whether σ^{91} is even or odd.
- (g) Determine the smallest integer m > 0 for which α^m equals the identity permutation. Do the same for σ and τ .
- (D2) Group elements as permutations. The goal of this problem is to see the following in action.

Theorem. Every finite group G with |G| = n is isomorphic to a subgroup of S_n .

- (a) Draw the triangle with vertices labeled 1, 2, 3. Write each element of D_3 as a permutation of the vertex labels.
- (b) Conclude that D_3 is isomorphic to a subgroup of S_3 .
- (c) Which elements of D_3 correspond to odd permutations in S_3 ?
- (d) The goal of the next few parts is to identify a subgroup of S_6 isomorphic to D_3 . Choose a labeling of the elements of D_3 as a_1, a_2, \ldots, a_6 (you may do this in any way you wish).
- (e) Let $r \in D_3$ denote clockwise rotation by 120°. Define a permutation $\sigma \in S_6$ given by $\sigma(i) = k$ where $a_k = a_i r$. Verify that σ is indeed a permutation by writing it in permutation notation.
- (f) Repeat the previous part for each $a \in D_3$ (that is, define a permutation $\sigma_a \in S_6$ given by $\sigma(i) = k$ where $a_k = a_i a$). Write down all 6 resulting permutations (you may want to "divide and conquer" amongst your groupmates to save time!).
- (g) Verify in three examples that for any $a, b \in D_3$, the permutation corresponding to ab equals the product of the permutations corresponding to a and b.
- (h) Which elements of D_3 correspond to odd permutations in S_6 ? Does this match part (c)?
- (i) Using the ideas above, find a subgroup of S_5 isomorphic to \mathbb{Z}_5 .
- (j) Using the ideas above, find a subgroup of S_4 isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

(R1) Write σ and τ below as products of disjoint cycles, and as products of 2-cycles. Do the same for σ^{-1} and τ^{-1} .

$$\sigma = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 3 \ 6 \ 4 \ 1 \ 5 \ 2 \end{pmatrix} \qquad \tau = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 4 \ 7 \ 2 \ 8 \ 5 \ 1 \ 6 \end{pmatrix}$$

- (R2) Let B_n denote the set of odd permutations in S_n . Define $f: A_n \to B_n$ by $f(\sigma) = \sigma \cdot (12)$.
 - (a) Prove f is injective.
 - (b) Prove f is surjective.
 - (c) Prove that $|A_n| = n!/2$ (hint: what do parts (a) and (b) imply about $|A_n|$ and $|B_n|$?).
- (R3) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) The set B_n of odd permutations in S_n is a subgroup of S_n .
 - (b) There is a subgroup of S_{36} isomorphic to D_{18} .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove that (12) and $(123 \cdots n)$ generate S_n .