Fall 2018, Math 320
 Midterm Exam Review

The problems below are intended to help you review for the midterm exam, and may not be turned in for credit.
(ER1) Is 123456987 prime?
(ER2) Which elements $a \in \mathbb{Z}_{9}$ have a square root (i.e. an element whose square is a)?
(ER3) Find all elements $a \in \mathbb{Z}_{6}$ satisfying $a^{2}=a$.
(ER4) Determine which elements of \mathbb{Z}_{10} are units, which are zero-divisors, and which are neither.
(ER5) Prove that if $d=(a, b)$ then $d^{2}=\left(a^{2}, b^{2}\right)$.
(ER6) Suppose p is prime. Prove if $a^{2} \equiv b^{2} \bmod p$, then either $a \equiv b \bmod p$ or $a \equiv-b \bmod p$.
(ER7) Prove or disprove: for all $x, y, z \in \mathbb{Z}$ and $n \geq 2$, if $x z \equiv y z \bmod n$, then $x \equiv y \bmod n$.
(ER8) Consider the set $T=2 \mathbb{Z}$ of even integers, and operations \oplus and \odot given by

$$
a \oplus b=a+b \quad \text { and } \quad a \odot b=a b / 2
$$

for all $a, b \in R$. Prove that (T, \oplus, \odot) has associative multiplication, satisfies the distributivity axiom, and that every element of T has an additive inverse.
(ER9) Prove that if R is a commutative ring and

$$
S=\left\{r \in R: r a=0_{R} \text { for all } a \in R\right\}
$$

then S is a subring of R. (Careful: the elements of S are those such that multiplying by any element of R yields zero.)
(ER10) Is

$$
R=\left\{\left(\begin{array}{ll}
a & a \\
0 & a
\end{array}\right): a \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

a subring of $M(\mathbb{R})$?
(ER11) Suppose R is a ring with unity and $a \in R$. Using only ring axioms, prove $-a=(-1) a$.
(ER12) Suppose R is a ring and $a, b \in R$. Using only ring axioms, prove $-(a+b)=(-a)+(-b)$.
(ER13) Suppose R is a ring and $a \in R$ is not a zero-divisor. Prove that if $a b=a c$, then $b=c$.
(ER14) Determine whether the map $\phi: \mathbb{Q} \rightarrow \mathbb{Q}$ given by

$$
\phi(a)= \begin{cases}\frac{1}{a} & \text { if } a \neq 0 \\ 0 & \text { if } a=0\end{cases}
$$

is an isomorphism. If not, which of the 4 requirements fail? (It may be more than one!)
(ER15) Let (T, \oplus, \odot) denote the ring from Problem (ER8) above (you may assume T is a ring). Prove $T \cong(\mathbb{Z},+, \cdot)$.

