Fall 2018, Math 320

Final Exam Review

The problems below are intended to help you review for the final exam, and may not be turned in for credit.
(ER1) True or false: for all $x, y, z \in \mathbb{Z}$ and $n \geq 2$, if $x z \equiv y z \bmod n$, then $x \equiv y \bmod n$.
(ER2) True or false: if R is a ring and $r, r^{\prime} \in R$ are units, then $r+r^{\prime}$ is a unit.
(ER3) Determine whether $f(x)=x^{2}+1$ divides $g(x)=x^{4}+1$ in $\mathbb{Z}_{2}[x]$. Does the same hold in $\mathbb{Z}_{p}[x]$ for some/all primes $p>2$?
(ER4) Is the set

$$
R=\left\{a_{d} x^{d}+\cdots+a_{1} x+a_{0} \mid a_{2}=0\right\} \subset \mathbb{Q}[x]
$$

of polynomials with no terms in degree 2 a ring? If so, is it a field?
(ER5) Determine whether the polynomial $x^{3}+5 x^{2}+3 x+4 \in \mathbb{Q}[x]$ is irreducible.
(ER6) Factor $x^{4}+4 x^{3}+5 x^{2}+2 x+2 \in \mathbb{Z}_{7}[x]$ as a product of irreducibles.
(ER7) Factor $x^{5}+x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Z}_{2}[x]$ as a product of irreducibles.
(ER8) Find all irreducible polynomials of degree 3 in $\mathbb{Z}_{2}[x]$.
(ER9) Find two distinct monic irreducible polynomials $f(x), g(x) \in \mathbb{Z}_{5}[x]$ of degree 3. Show the product of $[x+1]$ and $\left[x^{2}+2 x+1\right]$ is different in $\mathbb{Z}_{5}[x] /\langle f(x)\rangle$ and $\mathbb{Z}_{5}[x] /\langle g(x)\rangle$.
(ER10) Determine whether $[x+1]$ is a unit in $\mathbb{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle$.
(ER11) Determine whether $\mathbb{Z}_{3}[x] /\left\langle x^{3}+1\right\rangle$ has zero-divisors.
(ER12) Prove that $G=\{1,5,7,11\} \subset \mathbb{Z}_{12}$ is a group under multiplication (you may state without proof that multiplication in \mathbb{Z}_{12} is associative $)$. Is $G \cong\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$?
(ER13) Determine whether $\left(\mathbb{Q}_{>0},+\right)$ is a group. Determine whether $\left(\mathbb{Q}_{>0}, \cdot\right)$ is a group.
(ER14) Multiply the permutations σ and τ given below. Find σ^{-1}. Write σ, τ, and σ^{-1} each as a product of disjoint cycles and as a product of 2-cycles.

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 1 & 4
\end{array}\right) \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1
\end{array}\right)
$$

(ER15) Write all of the elements of A_{4} as products of disjoint cycles.

