Fall 2019, Math 579: Problem Set 3
 Due: Thursday, September 19th, 2019
 Binomial Theorem and Inclusion-Exclusion

Discussion problems. The problems below should be worked on in class.
(D1) Combinatorial proofs and the binomial theorem.
(a) Fill in the blanks in the following combinatorial proof that for any $n \geq 0$,

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}
$$

Proof. We will count the number of ways to choose subsets $A, B \subseteq[n]$ with $A \subseteq B$.
Right side: for each $i \in[n]$, either $i \in A, i \in B \backslash A$, or \qquad . This yields 3^{n} possibilities.
Left side: if we let $k=|B|$, then for each $k=0,1, \ldots, n$, there are \qquad choices for B, and \qquad ways to choose a subset $A \subseteq B$. This yields

$$
2^{0}\binom{n}{0}+2^{1}\binom{n}{1}+\cdots+2^{n}\binom{n}{n}
$$

possibilities. We conclude the left side must equal the right side.
(b) Give an algebraic proof (i.e., using the binomial theorem) of the identity in part (a).
(c) Give a combinatorial proof that whenever $k \geq 0$ and $k+3 \leq n$,

$$
\binom{n}{3}\binom{n-3}{k}=\binom{n}{k}\binom{n-k}{3}
$$

(d) Consider the following identity, valid whenever $n \geq 1$:

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(i) Give a combinatorial proof of this identity.
(ii) Give an algebraic proof of this identity. Hint: consult Preliminary Problem (P1).
(iii) Give a proof by induction. Hint: be very careful with your indices!
(D2) Applications of Inclusion-Exclusion. Recall the Sieve formula from Tuesday:

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{\substack{T \subseteq[n] \\ T \neq \emptyset}}(-1)^{|T|+1}\left|\bigcap_{j \in T} A_{j}\right|
$$

(a) How many positive integers less than 100 are relatively prime to either 2 or 3 ?
(b) How many 3-digit positive integers are divisible by 6,7 , or 8 ? Clearly label A_{1}, A_{2}, A_{3}.
(c) In part (b), for which sets T in the Sieve formula does 24 appear in $\bigcap_{j \in T} A_{j}$?
(d) In the general Sieve formula at the start of this problem, suppose $a \in A_{1} \cup \cdots \cup A_{n}$ and that a lies in exactly m of the sets A_{1}, \ldots, A_{n}. Explain why, on the right hand side of the Sieve formula, a is counted the following number of times:

$$
\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\binom{m}{4}+\cdots+(-1)^{m-1}\binom{m}{m}
$$

(e) Give an algebraic proof that the expression above equals 1 for any m.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the coefficient of $x^{11} y^{7}$ in the expansion of $(x+y)^{18}+x^{3}(x-y)^{15}$.
Hint: don't expand!!! This is what the binomial theorem is for!!!
(H2) Use induction on n to prove that for all $n \geq 1$,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Hint: use the identity

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

in your inductive step.
(H3) Give an algebraic proof (that is, using the binomial theorem) that for all $n \geq 1$,

$$
\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}\binom{n}{k}=\frac{1}{n+1}
$$

(H4) Give a combinatorial proof that for all $n \geq 1$,

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{2 n}{n}
$$

(H5) How many ways can we arrange the characters $3,3,4,4,5,6,7$ so that no two consecutive digits are identical?
(H6) Find $\phi(210)$, where $\phi(n)$ denote the number of elements of [n] relatively prime to n. Hint: $210=2 \cdot 3 \cdot 5 \cdot 7$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Give a combinatorial proof of the identity

$$
(n-r)\binom{n+r-1}{r}\binom{n}{r}=n\binom{n+r-1}{2 r}\binom{2 r}{r}
$$

(C2) Let $\phi(n)$ denote the number of elements of $[n]$ relatively prime to n. Find a formula for $\phi\left(p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}\right)$, where p_{1}, \ldots, p_{k} are distinct primes and $a_{1}, \ldots, a_{k} \geq 1$. Hint: first prove this for the case $k=1$.

