Fall 2019, Math 579: Problem Set 4

 Due: Tuesday, September 24th, 2019 PartitionsDiscussion problems. The problems below should be worked on in class.
(D1) Bell numbers. Recall that $S(n, k)$ denotes the number of set partitions of $[n]$ into exactly k blocks (called the Stirling numbers of the 2nd kind). Let $B(n)$ denote the total number of set partitions of $[n]$, that is, $B(n)=\sum_{k=1}^{n} S(n, k)$ (called the n-th Bell number).
(a) Find $B(1), B(2), B(3)$, and $B(4)$. Which of these did you find in Problem (P1)?
(b) Find $B(5)$ using the identity

$$
B(n+1)=1+\sum_{k=1}^{n}\binom{n}{k} B(k) .
$$

(c) Give a combinatorial proof of the identity in part (b).
(d) Give a combinatorial proof that for all $n \geq 1$,

$$
B(n+1)-B(n)=\sum_{k=1}^{n} k S(n, k) .
$$

(D2) Ferres diagrams. Recall that $p(n)$ counts the number of integer partitions of n, and $p_{k}(n)$ counts the number of partitions into exactly k parts.
(a) Find $p(6)$ and $p_{3}(6)$, and list the corresponding partitions.
(b) Prove that for $n \geq 2$, the number of partitions of n with no 1 's is given by $p(n)-p(n-1)$.
(c) Given a partition of n, the associated Ferrer diagram or Young diagram is a drawing of n boxes that are "upper-left justified" where the number of boxes in the i 'th row equals the size of the i 'th part. See below for examples.

Find all partitions of 7 into 3 parts, and write the Ferrer diagram for each partition.
(d) Given a Ferrer diagram of a partition, what is the number of rows equal to? What is the number of columns equal to?
(e) Using part (d), find a bijection between the partitions of n into at most k parts and the partitions of n into parts of size at most k.
(f) Is it true that $p_{k}(n)$ equals the number of partitions of n into parts of size exactly k ?
(g) The partition obtained by reflecting a Ferres diagram about its diagonal (which you likely used in the preceeding two problems) is called the conjugate partition. Explain why the conjugate of a partition in which every part appears an even number of times is a partition whose parts are all even. Is the converse true?
(h) Prove that the number of partitions of n into at most k parts equals $p_{k}(n+k)$.
(i) A partition is self-conjugate if it equals its conjugate. Prove that the number of selfconjugate partitions of n equals the number of partitions of n into distinct odd parts.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the number of compositions of 5 . Find the number of compositions of 10 into all even parts. How are these related?
(H2) Use the recurrence identity $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$ from class to complete the next 3 rows of the triangle of Stirling numbers of the 2 nd kind (the analog of Pascal's triangle where the entry in row n and position k is $S(n, k))$.

				1		
		1		1		
	1		3		1	
1		7		6		1

(H3) Find a closed formula for $S(n, n-2)$ for all $n \geq 3$.
(H4) Let $F(n)$ denote the number of set partitions of $[n]$ with no singleton blocks. Prove that $B(n)=F(n)+F(n+1)$.
(H5) A partition is self-conjugate if it equals its conjugate. Prove that the number of selfconjugate partitions of n has the same parity as $p(n)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let $F(n)$ denote the number of all partitions of $[n]$ with no singleton blocks. Find a recursive formula for $F(n+1)$ in terms of $F(k)$ for $k \leq n$, and give a combinatorial proof of its correctness.

