Fall 2019, Math 579: Problem Set 7 Due: Thursday, October 24th, 2019 Matching and Bipartite Graphs

(D1) Chromatic polynomials. Fix a graph G with $n=|V(G)|$. The chromatic function of G is

$$
\chi_{G}(k)=\# \text { proper colorings of } G \text { with } k \text { colors. }
$$

(a) Find the chromatic function of each of the following graphs.
(i) The competely disconnected graph D_{n} with n vertices and no edges.
(ii) The complete graph K_{n}.
(iii) The path graph P_{n}.

What do you notice about the "type" of each of these functions?
(b) Let c_{i} denote the number of ways to properly color G using exactly i colors. Consider (without proof, for the moment) the equality

$$
\chi_{G}(k)=\sum_{i=1}^{n}\binom{k}{i} c_{i}=\binom{k}{1} c_{1}+\binom{k}{2} c_{2}+\cdots+\binom{k}{n} c_{n}
$$

for all $k \geq 1$. Use this to find $\chi_{G}(k)$ for $G=K_{3}$, and verify it matches part (a).
(c) Give a combinatorial proof of the identity in part (b).
(d) Using the fact that $\binom{k}{i}=\frac{1}{i!} k(k-1) \cdots(k-i+1)$ is a polynomial in k of degree i, deduce from part (b) that $\chi_{G}(k)$ is a polynomial in k of degree n.
(e) Fix an edge $e \in E(G)$. Consider (without proof, for the moment) the equality

$$
\chi_{G}(k)=\chi_{G \backslash e}(k)-\chi_{G / e}(k)
$$

Using only this equality and part (a)(i), find the chromatic polynomial of $G=K_{3}$.
(f) Use the equality in part (e) to give an inductive proof that $\chi_{G}(k)$ is a polynomial. Does this proof guarantee that the coefficients of $\chi_{G}(k)$ are all integers? Hint: use part (a)(i) as your base case.
(g) Give a combinatorial proof of the equality in part (e).
(D2) Hall's Marriage Theorem. Given a graph G and $T \subset V(G)$, let $N(T)$ denote the set of neighbors of vertices in T. In this problem, you will prove the following result.

Theorem. Fix a bipartite graph $G=(X, Y)$. There exists a perfect matching of X into Y if and only if $|T| \leq|N(T)|$ for all $T \subset X$.
(a) First, verify Hall's Marriage Theorem holds in the special cases when $|X|=1,|X|=2$, $|Y|=1$ and $|Y|=2$.
(b) Prove the forward direction of Hall's Marriage Theorem.
(c) We will prove the backward direction by induction on $|X|$. Prove the base case, and state the inductive hypothesis.
(d) Prove the inductive step under the stronger assumption that $|T|<|N(T)|$ for $T \subset X$. (This leaves only the case $|T|=|N(T)|$ remaining.)
(e) Next, suppose that $B \subset X$ satisfies $|B|=|N(B)|$. Let $B^{\prime}=X \backslash B$, and let $A=N(B)$ and $A^{\prime}=Y \backslash A$. Draw a diagram for G labeling these sets.
(f) Show that the restrictions of G to $B \cup A$ and $B^{\prime} \cup A^{\prime}$ (that is, the graphs obtained from each set by deleting the remaining vertices) satisfy the indutive hypothesis.
(g) Conclude that Hall's Marriage Theorem holds.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the chromatic polynomial of $K_{3,3}$.
(H2) Fix a graph G with n vertices and m edges.
(a) Prove that the leading coefficient of $\chi_{G}(k)$ (that is, the coefficient of k^{n}) is 1 .
(b) Prove that the coefficient of k^{n-1} in the chromatic polynomial $\chi_{G}(k)$ equals $-m$.

Hint: each part of this problem can be proven in (at least) 2 distinct ways. One way uses a direct proof with Problem (D1)(b), and another uses induction with Problem (D1)(e).
(H3) Fix a connected graph G with n vertices. Prove that G is a tree if and only if

$$
\chi_{G}(k)=k(k-1)^{n-1}
$$

Hint: use Problem (H2) for the backwards direction.
(H4) Which of the following can be the degrees of the vertices of a bipartite graph?
(a) $3,3,3,3,3,3$ (6 vertices total)
(b) $3,3,3,3,3,3,3,3$ (8 vertices total)
(c) $3,3,3,3,3,5,6,6,6$ (9 vertices total)
(H5) Suppose G is a bipartite graph in which every vertex has degree k. Prove that G has a perfect matching.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix $n \geq 1$ and $k<n / 2$. Let $G=(X, Y)$ denote a bipartite graph so that X consists of the k-element subsets of $[n], Y$ consists of the $(k+1)$-element subsets of $[n]$, and $(x, y) \in E(G)$ for $x \in X$ and $y \in Y$ precisely when $x \subset y$. Find a perfect matching for X into Y.
(C2) Solve all parts of Problem (H2) using a different method than you already did.

