Fall 2019, Math 579: Problem Set 8
 Due: Tuesday, October 29th, 2019 Planar Graphs

Discussion problems. The problems below should be completed in class.
(D1) Counting faces of planar graphs. For a planar graph G, let V, E, and F denote the number of vertices, edges, and faces of G, respectively.
(a) Compute the quantity $V-E+F$ for each of the following graphs.

(b) Have each group member draw their favorite connected planar graph with at least 8 vertices and 15 edges, and compute $V-E+F$ for their graph.
(c) Notice this came out the same for each graph. This is known as Euler's theorem for planar, connected graphs. We will prove this by induction on E.
(i) Base case: prove Euler's theorem when $E=V-1$. Why is this the base case?
(ii) Carefully and precisely, write the inductive hypothesis.
(iii) What can happen when an edge $e \in E(G)$ is removed?
(iv) Finish your proof that Euler's theorem holds for any planar graph G.
(d) What equation must V and E satisfy if G is self-dual (that is, if G is isomorphic to one of its dual)? Is it true that G is self-dual if and only if this equation holds?
(e) Use Euler's Theorem to give a non-pictorial proof that K_{5} is not planar. Hint: how many sides would each face need to have?
(f) Use Euler's Theorem to give a non-pictorial proof that $K_{3,3}$ is not planar.
(g) Fix a simple (not necessarily planar!) graph G with V vertices and E edges.
(a) Prove that if G is planar, then $3 F \leq 2 E$.
(b) Prove that if G is planar, then $E \leq 3 V-6$.
(c) Is it true that any connected graph satisfying $E \leq 3 V-6$ is planar?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Prove that the wheel graph W_{n} is self-dual.
(H2) Prove that if any 2 edges are removed from the graph K_{6}, the result is not planar. Is the same true if we remove 3 edges?
(H3) Suppose for a given planar graph G, each face of G (including the "outside" one!) has either 3 or 5 boundary edges. Prove that the number of faces of G is even.

