Fall 2019, Math 579: Problem Set 9
Due: Thursday, November 14th, 2019
Recurrence Relations and Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Recurrence relations. For each of the following, (i) compute a_{0}, \ldots, a_{5}, (ii) use generating functions to find a formula for a_{n} in terms of n, and (iii) verify your formula for $n \leq 5$.
(a) $a_{0}=1, a_{n}=2 a_{n-1}+1$.
(b) $a_{0}=3, a_{1}=1, a_{n}=2 a_{n-1}+3 a_{n-2}$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use generating functions to find a_{n} if $a_{0}=1$ and $a_{n}=3 a_{n-1}+2^{n}$.
(H2) Use generating functions to find L_{n} if $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$.
(H3) Define $c(n)=1$ if there exists a way to write n as a sum of the values 3 and 5 , and $c(n)=0$ otherwise. For instance, $c(13)=1$ since $13=3+5+5$, and $c(15)=1$ since $15=5+5+5$ (as well as $15=3+3+3+3+3$), but $c(7)=0$ since there is no way to add 3 's and 5 's together to obtain 7. Prove that

$$
\sum_{n=0}^{\infty} c(n) z^{n}=\frac{1-z^{15}}{\left(1-z^{3}\right)\left(1-z^{5}\right)}
$$

Conjecture an analogous result if positive integers n_{1} and n_{2} replace 3 and 5 . Note: you are not required to prove your conjecture.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove your conjecture from Problem (H3).

