Fall 2019, Math 579: Problem Set 10
 Due: Thursday, November 21st, 2019
 Operations on Power Series

Discussion problems. The problems below should be worked on in class.
(D1) Power series of polynomial functions. Recall that in lecture, we saw

$$
1+2 z+3 z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

and that the "formal derivative" of $A(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ is

$$
A^{\prime}(z)=\frac{d}{d z} A(z)=a_{1}+2 a_{2} z+3 a_{3} z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}
$$

(a) Manipulate the first expression above to write $\sum_{n=0}^{\infty} n z^{n}$ as a rational expression in z.
(b) Use "formal differentiation" to express $\sum_{n=0}^{\infty} n^{2} z^{n}$ as a rational expression in z.
(c) Use "formal differentiation" to express $\sum_{n=0}^{\infty} n^{3} z^{n}$ as a rational expression in z.
(D2) Consistency. The goal of this problem is to do some "sanity checks" on formal power series derivative rules. Recall the power series

$$
e^{z}=1+\frac{1}{1!} z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}
$$

(a) Verify the term-by-term derivative of the series for $e^{2 z}$ equals the series for $2 e^{2 z}$.
(b) Find the derivative of $z^{2} e^{z}$ using (i) term-by-term differentation, and (ii) using standard derivative rules, and verify they are equal.
(c) Verify that

$$
\frac{e^{z}-1}{1-z}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k!}\right) z^{n}
$$

(d) Verify that the term-by-term derivative of the series in part (c) matches the one obtained from quotient rule.
(D3) Power series derivatives. Fix formal power series $A(z)$ and $B(z)$. The goal of this problem is to prove some of the "derivative rules" from Calculus.
(a) Prove that $\frac{d}{d z}[A(z) B(z)]=A^{\prime}(z) B(z)+A(z) B^{\prime}(z)$.
(b) Prove that if $B(z)$ has constant term zero, then $\frac{d}{d z}[A(B(z))]=A^{\prime}(B(z)) B^{\prime}(z)$.
(c) Prove that if $B(z)$ has a nonzero constant term, then

$$
\frac{d}{d z}\left[\frac{A(z)}{B(z)}\right]=\frac{A^{\prime}(z) B(z)-A(z) B^{\prime}(z)}{(B(z))^{2}}
$$

Hint: using parts (a) and (b) can save a LOT of algebra.
(d) Where in parts (b) and (c) did you use the assumption(s) on $B(z)$?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Let $A(z)=\sum_{n=0}^{\infty}\left(n^{2}+3 n-5\right) z^{n}$. Find a rational expression for $A(z)$ in terms of z. Your answer should not contain any "..." or sigma-sums.
Hint: you already did most of the work in discussion problem (D1)!
(H2) Find an explicit formula for a_{n} if $a_{0}=1, a_{1}=1$, and $a_{n}=n a_{n-1}+n(n-1) a_{n-2}$ for $n \geq 2$. Hint: use exponential generating functions.
(H3) Let

$$
\begin{aligned}
& A(z)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}=z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\frac{1}{7!} z^{7}+\cdots \\
& B(z)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n)!} z^{2 n}=1-\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4}-\frac{1}{6!} z^{6}+\cdots
\end{aligned}
$$

(a) Show that $A^{\prime}(z)=B(z)$ and $B^{\prime}(z)=-A(z)$.
(b) Using part (a), show that $2 A(z) A^{\prime}(z)+2 B(z) B^{\prime}(z)=0$.
(c) Use part (b) to argue that $(A(z))^{2}+(B(z))^{2}=1$. Thinking back to Calculus 2, what familiar identity does this equality encode?
(H4) Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$. Prove that $A(z)$ has a multiplicative inverse if and only if $a_{0} \neq 0$. Hint: if $A(z) B(z)=1$ for some $B(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$, show each b_{n} is determined by $a_{0}, a_{1}, \ldots, a_{n}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix a function $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}$. Prove that we can express the generating function

$$
F(z)=\sum_{n=0}^{\infty} f(n) z^{n}=\frac{Q(z)}{(1-z)^{d+1}}
$$

for some polynomial $Q(z)$ of degree at most d if and only if $f(n)=c_{d} n^{d}+\cdots+c_{1} n+c_{0}$ is a polynomial of degree exactly d.

