Fall 2019, Math 579: Problem Set 11 Due: Tuesday, December 10th, 2019 Exponential Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Let ℓ_{n} denote the number of linear orderings of $[n]$, and let $L(z)=\sum_{n=0}^{\infty} \frac{\ell_{n}}{n!} z^{n}$. Give a combinatorial proof that $L(z)=1+z L(z)$, and use this to derive the closed form $\ell_{n}=n!$.
(D2) A rooted tree is a tree with a disinguished vertex, called the root. Let t_{n} denote the number of rooted trees with vertex set $[n]$, and let $T(z)=\sum_{n=0}^{\infty} \frac{t_{n}}{n!} z^{n}$ denote its exponential generating function. Give a combinatorial proof that $T(z)=z e^{T(z)}$. Hint: what is left if you remove the root of a rooted tree?
(D3) Find the exponential generating function for the number t_{n} of ways to arrange n books on two bookshelves so that each shelf has at least one book. Then, find a closed form for t_{n}.
(D4) Suppose from our class of n students, we select an odd number of students to serve on a committee, and select an even number of committee members to serve on a subcommittee. Find the exponential generating function for the number c_{n} of ways to do this, and then use this to derive a closed formula for c_{n}.
(D5) Suppose we have n cards. We want to split them into an even number of nonempty subsets, form a line within each subset, then arrange the subsets in a line. Use generating functions to determine the number of different ways to do this.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Write up the solution to any 2 of the discussion problems.

