Fall 2019, Math 579: Preliminary Problem Set 12 Due: Thursday, December 5th, 2019 Exponential Generating Functions

Preliminary problems. These problems should be completed before discussion on Thursday.

(P1) A rooted tree is a tree with a disinguished vertex, called the *root*. Find all 9 rooted trees with vertex set [3] (it is common to mark the root by circling it).

(P2) Fill in the following table, based on the notes from Tuesday's lecture, to give a combinatorial interpretation of the value of c_n in terms of a_n and b_n .

	Ordinary Generating Functions	Exponential Generating Functions
	$A(z) = \sum_{n=0}^{\infty} a_n z^n, \ B(z) = \sum_{n=0}^{\infty} b_n z^n,$ $C(z) = \sum_{n=0}^{\infty} c_n z^n$	$A(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n, B(z) = \sum_{n=0}^{\infty} \frac{b_n}{n!} z^n,$ $C(z) = \sum_{n=0}^{\infty} \frac{c_n}{n!} z^n$
C(z) = A(z)B(z)	$c_n = \#$ ways to	$c_n = \#$ ways to
C(z) = A(B(z))	$c_n = \#$ ways to	$c_n = \#$ ways to