Fall 2019, Math 579
 Midterm Exam 3 Review

The problems below are intended to help you review for the midterm exam, and may not be turned in for credit.
(ER1) In defining the composition $A(B(z))$ of formal power series, we require that $B(z)$ have constant term 0 . Why is this?
(ER2) Derive a simple expression for the ordinary generating function of the sequence $a_{n}=n^{2}$. Do the same for its exponential generating function.
(ER3) Use ordinary generating functions to find a closed form for the recurrence relation given by $a_{0}=1$ and $a_{n}=2 a_{n-1}+n^{2}$.
(ER4) Use exponential generating functions to find a closed form for the recurrence relation given by $a_{0}=1$ and $a_{n}=n a_{n-1}+n$! for $n \geq 1$.
(ER5) Fix power series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, and let $\frac{d}{d z}$ denote term-byterm differentation. Verify

$$
\frac{d}{d z}(A(z) B(z))=\left(\frac{d}{d z} A(z)\right) B(z)+A(z)\left(\frac{d}{d z} B(z)\right),
$$

the product rule for formal power series.
(ER6) Recall that $e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$, and consider the formal power series

$$
\ln (1+z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} z^{n+1}
$$

(a) Justify the above definition by differentiating both sides (using calculus).
(b) Prove $e^{-z}=1 / e^{z}$.
(c) Prove that $\ln \left(e^{z}\right)=z$.
(d) Pick your favorite algebraic property involving $\ln (1+z)$ and/or e^{z}, and prove that it holds in formal power series-land. Alternatively, look up the power series expansions for $\sin (z)$ and $\cos (z)$ in your favorite Calculus textbook, and prove (using formal power series) that $\sin (2 z)=2 \sin (z) \cos (z)$.
(ER7) Recall that $S(n, k)$ denotes the number of set partitions of $[n]$ into k nonempty blocks. For example, $S(3,2)=3$ counts the partitions $\{\{12\},\{3\}\},\{\{13\},\{2\}\}$, and $\{\{23\},\{1\}\}$ of [3] into exactly 2 blocks.
For $k \geq 1$, find an expression for the exponential generating function

$$
S_{k}(z)=\sum_{n=0}^{\infty} S(n, k) \frac{z^{n}}{n!}
$$

in terms of familiar exponential generating functions ($e^{z}, \ln (z)$, etc.). Use this to find a closed form when $k=1, k=2$ and $k=3$. Note: there is no known closed form for general k, so do not attempt to solve for the coefficients in general!
(ER8) A permutation of $[n]=\{1, \ldots, n\}$ is called indecomposable if it cannot be split into a permutation on $\{1, \ldots, k\}$ and a permutation on $\{k+1, \ldots, n\}$ for $1 \leq k \leq n-1$. For example, 54321 is indecomposable, but 23154 can be decomposed as 231 and then 54 .
Let c_{n} denote the number of indecomposable permutations on $[n]$, and let $c_{0}=0$. Find an equation relating the ordinary generating function $C(z)$ for c_{n} and the ordinary generating function for the number of permutations of $[n]$, that is, $P(z)=\sum_{n=0}^{\infty}(n!) z^{n}$.
(ER9) A combinatorial octopus is an undirected graph of the following form.

Let o_{n} denote the number of combinatorial octopii on n vertices. Additionally, let ℓ_{n} denote the number of ways to linearly order a set with n elements, and let c_{n} denote the number of ways to arrange n elements in a circle. Express the exponential generating function for o_{n} in terms of the exponential generating functions of ℓ_{n} and c_{n}. Use this to find o_{n}.

