Fall 2019, Math 579 Midterm Exam 3 Review

The problems below are intended to help you review for the midterm exam, and may *not* be turned in for credit.

- (ER1) In defining the composition A(B(z)) of formal power series, we require that B(z) have constant term 0. Why is this?
- (ER2) Derive a simple expression for the ordinary generating function of the sequence $a_n = n^2$. Do the same for its exponential generating function.
- (ER3) Use ordinary generating functions to find a closed form for the recurrence relation given by $a_0 = 1$ and $a_n = 2a_{n-1} + n^2$.
- (ER4) Use exponential generating functions to find a closed form for the recurrence relation given by $a_0 = 1$ and $a_n = na_{n-1} + n!$ for $n \ge 1$.
- (ER5) Fix power series $A(z) = \sum_{n=0}^{\infty} a_n z^n$ and $B(z) = \sum_{n=0}^{\infty} b_n z^n$, and let $\frac{d}{dz}$ denote term-by-term differentiation. Verify

$$\frac{d}{dz}\left(A(z)B(z)\right) = \left(\frac{d}{dz}A(z)\right)B(z) + A(z)\left(\frac{d}{dz}B(z)\right),$$

the product rule for formal power series.

(ER6) Recall that $e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$, and consider the formal power series

$$\ln(1+z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} z^{n+1}$$

- (a) Justify the above definition by differentiating both sides (using calculus).
- (b) Prove $e^{-z} = 1/e^z$.
- (c) Prove that $\ln(e^z) = z$.
- (d) Pick your favorite algebraic property involving $\ln(1+z)$ and/or e^z , and prove that it holds in formal power series-land. Alternatively, look up the power series expansions for $\sin(z)$ and $\cos(z)$ in your favorite Calculus textbook, and prove (using formal power series) that $\sin(2z) = 2\sin(z)\cos(z)$.
- (ER7) Recall that S(n, k) denotes the number of **set** partitions of [n] into k nonempty blocks. For example, S(3, 2) = 3 counts the partitions $\{\{12\}, \{3\}\}, \{\{13\}, \{2\}\}, \text{ and } \{\{23\}, \{1\}\}$ of [3] into exactly 2 blocks.

For $k \geq 1$, find an expression for the exponential generating function

$$S_k(z) = \sum_{n=0}^{\infty} S(n,k) \frac{z^n}{n!}$$

in terms of familiar exponential generating functions $(e^z, \ln(z), \text{ etc.})$. Use this to find a closed form when k = 1, k = 2 and k = 3. Note: there is no known closed form for general k, so do not attempt to solve for the coefficients in general!

- (ER8) A permutation of $[n] = \{1, \ldots, n\}$ is called *indecomposable* if it cannot be split into a permutation on $\{1, \ldots, k\}$ and a permutation on $\{k + 1, \ldots, n\}$ for $1 \le k \le n - 1$. For example, 54321 is indecomposable, but 23154 can be decomposed as 231 and then 54. Let c_n denote the number of indecomposable permutations on [n], and let $c_0 = 0$. Find an equation relating the ordinary generating function C(z) for c_n and the ordinary generating function for the number of permutations of [n], that is, $P(z) = \sum_{n=0}^{\infty} (n!) z^n$.
- (ER9) A combinatorial octopus is an undirected graph of the following form.

Let o_n denote the number of combinatorial octopii on n vertices. Additionally, let ℓ_n denote the number of ways to linearly order a set with n elements, and let c_n denote the number of ways to arrange n elements in a circle. Express the exponential generating function for o_n in terms of the exponential generating functions of ℓ_n and c_n . Use this to find o_n .