Fall 2019, Math 620: Week 1 Problem Set
 Due: Thursday, September 5th, 2019
 Introduction to Groups

Discussion problems. The problems below should be completed in class.
(D1) Checking group axioms. Determine which (if any) of the group axioms are violated by each of the following sets G under the given operation $*$. Brief justifications are sufficient for this problem (no formal proof is required).
(a) $G=\mathbb{Z} ; a * b=a-b$.
(b) $G=\mathbb{Z}_{\geq 0} ; a * b=a+b$.
(c) $G=\mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(d) $G=\{1,3,7,9\} \subset \mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(e) $G=\mathbb{R} \times \mathbb{R} ;(a, b) *(c, d)=(a c, b d)$.
(f) $G=\mathbb{R}^{*} \times \mathbb{R}$ where \mathbb{R}^{*} denotes the nonzero real numbers; $(a, b) *(c, d)=(a c, b c+d)$.
(D2) Group element orders. For a group (G, \cdot) and $a \in G$, the order of a, denoted $|a|$, is the smallest $k \in \mathbb{Z}_{\geq 1}$ such that $a^{k}=e$, or $|a|=\infty$ is no such k exists.
(a) Find the order of each element of D_{4}. Do the same for \mathbb{Z}.
(b) Fix a group (G, \cdot) and an element $a \in G$ with $|a|=n$. Locate and correct an error in the following proof that $a^{k}=e$ if and only if $n \mid k$.

Proof. Suppose $a^{k}=e$, and write $k=q n+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<n$. Then

$$
e=a^{k}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r}
$$

so by the minimality of n, we must have $r=0$. As such, $n \mid k$.
(c) Prove that if G is finite and $a \in G$, then $|a|$ is finite.
(d) Suppose (G, \cdot) is cyclic (that is, $G=\left\{a^{r}: r \in \mathbb{Z}\right\}$ for some $a \in G$) and that $|G|=n$. Turn the following "proof sketch" into a complete, rigorous proof that $G \cong\left(\mathbb{Z}_{n},+\right)$.

Proof. Since G is cyclic, there is some $a \in G$ with $G=\left\{a^{r}: r \in \mathbb{Z}\right\}$. The map

$$
\begin{aligned}
\varphi: G & \longrightarrow \mathbb{Z}_{n} \\
a^{r} & \longmapsto[r]_{n}
\end{aligned}
$$

is well-defined (that is, $a^{r}=a^{t}$ implies $\varphi\left(a^{r}\right)=\varphi\left(a^{t}\right)$) by part (b). From there, verifying φ is an isomorphism is straightforward.
(e) Give a sketch of a proof that if G is infinite and cyclic then $G \cong \mathbb{Z}$.
(D3) Group automorphisms. An automorphism of a group G is an isomorphism $G \rightarrow G$. The set of automporphisms of G, denoted $\operatorname{Aut}(G)$, is itself a group under composition.
(a) Find all elements of $\operatorname{Aut}(\mathbb{Z})$. Hint: where can an automorphism send $1 \in \mathbb{Z}$?
(b) Find $\operatorname{Aut}\left(\mathbb{Z}_{6}\right), \operatorname{Aut}\left(\mathbb{Z}_{7}\right)$, and $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$.
(c) State and prove a characterization of $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$.
(D4) Prove or disprove. Determine whether each of the following statements is true or false.
(a) Every element of an infinite group has infinite order.
(b) For any groups G_{1} and G_{2}, we have $\operatorname{Aut}\left(G_{1} \times G_{2}\right) \cong \operatorname{Aut}\left(G_{1}\right) \times \operatorname{Aut}\left(G_{2}\right)$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Suppose $(G, *)$ is a group, where $G=\{0,1,2,3,4,5,6,7\}$ and $*$ is an operation satisfying
(i) $a * b \leq a+b$ for every $a, b \in G$, and
(ii) $a * a=0$ for every $a \in G$.

Write out the operation table for G, and briefly justify why this is the only possibility.
(H2) Determine whether each of the following sets G form a group under the given operation *. Prove your assertions.
(a) $G=\{1,3,5,7,9\} \subset \mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(b) $G=\mathbb{R} ; a * b=a+b+3$.
(c) G is the set of nonzero real numbers; $a * b=|a| \cdot b$.
(H3) Suppose G is a group and $a, b \in G$. Using only group axioms, prove $(a b)^{-1}=b^{-1} a^{-1}$. Be especially careful with associativity!
(H4) Identify a subgroup of $G L_{2}(\mathbb{R})$ isomorphic to D_{4}. Identify a subgroup isomorphic to \mathbb{Z}_{6}.
(H5) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Every infinite group G has at least one proper, nontrivial subgroup.
(b) If (G, \cdot) is a group and $a, b, \in G$ with $|a|=n$ and $|b|=m$, then $|a b| \leq \operatorname{lcm}(n, m)$.
(c) The group $(\mathbb{Q},+)$ is cyclic.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) A graph H is a collection E of 2-element subsets of $\{1, \ldots, n\}$ (called edges). An automorphism of a graph is a permutation σ of the integers $1, \ldots, n$ such that $\{a, b\} \in E$ if and only if $\{\sigma(a), \sigma(b)\} \in E$. The set $\operatorname{Aut}(H)$ of automorphisms of a graph H is a group under composition (you are not required to prove this). For example, if H is the 4 -cycle graph, with edges $\{1,2\},\{2,3\},\{3,4\}$, and $\{4,1\}$, then $\operatorname{Aut}(H) \cong D_{4}$.
Identify a graph H whose automorphism group $\operatorname{Aut}(H)$ is isomorphic to $\left(\mathbb{Z}_{5},+\right)$.

