Fall 2019, Math 620: Week 1 Problem Set Due: Thursday, September 5th, 2019 Introduction to Groups

Discussion problems. The problems below should be completed in class.

- (D1) Checking group axioms. Determine which (if any) of the group axioms are violated by each of the following sets G under the given operation *. Brief justifications are sufficient for this problem (no formal proof is required).
 - (a) $G = \mathbb{Z}; a * b = a b.$
 - (b) $G = \mathbb{Z}_{>0}; a * b = a + b.$
 - (c) $G = \mathbb{Z}_{10}$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (d) $G = \{1, 3, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (e) $G = \mathbb{R} \times \mathbb{R}$; (a, b) * (c, d) = (ac, bd).
 - (f) $G = \mathbb{R}^* \times \mathbb{R}$ where \mathbb{R}^* denotes the nonzero real numbers; (a, b) * (c, d) = (ac, bc + d).
- (D2) Group element orders. For a group (G, \cdot) and $a \in G$, the order of a, denoted |a|, is the smallest $k \in \mathbb{Z}_{>1}$ such that $a^k = e$, or $|a| = \infty$ is no such k exists.
 - (a) Find the order of each element of D_4 . Do the same for \mathbb{Z} .
 - (b) Fix a group (G, \cdot) and an element $a \in G$ with |a| = n. Locate and correct an error in the following proof that $a^k = e$ if and only if $n \mid k$.

Proof. Suppose $a^k = e$, and write k = qn + r for some $q, r \in \mathbb{Z}$ with $0 \le r < n$. Then $e = a^k = (a^n)^q a^r = e^q a^r = a^r$.

so by the minimality of n, we must have r = 0. As such, $n \mid k$.

- (c) Prove that if G is finite and $a \in G$, then |a| is finite.
- (d) Suppose (G, \cdot) is *cyclic* (that is, $G = \{a^r : r \in \mathbb{Z}\}$ for some $a \in G$) and that |G| = n. Turn the following "proof sketch" into a complete, rigorous proof that $G \cong (\mathbb{Z}_n, +)$.

Proof. Since G is cyclic, there is some $a \in G$ with $G = \{a^r : r \in \mathbb{Z}\}$. The map

$$\varphi: G \longrightarrow \mathbb{Z}_n \\ a^r \longmapsto [r]_n$$

is well-defined (that is, $a^r = a^t$ implies $\varphi(a^r) = \varphi(a^t)$) by part (b). From there, verifying φ is an isomorphism is straightforward.

- (e) Give a sketch of a proof that if G is infinite and cyclic then $G \cong \mathbb{Z}$.
- (D3) Group automorphisms. An automorphism of a group G is an isomorphism $G \to G$. The set of automorphisms of G, denoted $\operatorname{Aut}(G)$, is itself a group under composition.
 - (a) Find all elements of Aut(\mathbb{Z}). Hint: where can an automorphism send $1 \in \mathbb{Z}$?
 - (b) Find $Aut(\mathbb{Z}_6)$, $Aut(\mathbb{Z}_7)$, and $Aut(\mathbb{Z}_8)$.
 - (c) State and prove a characterization of $\operatorname{Aut}(\mathbb{Z}_n)$.
- (D4) Prove or disprove. Determine whether each of the following statements is true or false.
 - (a) Every element of an infinite group has infinite order.
 - (b) For any groups G_1 and G_2 , we have $\operatorname{Aut}(G_1 \times G_2) \cong \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)$.

Homework problems. You must submit all homework problems in order to receive full credit.

- (H1) Suppose (G, *) is a group, where $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and * is an operation satisfying
 - (i) $a * b \le a + b$ for every $a, b \in G$, and
 - (ii) a * a = 0 for every $a \in G$.

Write out the operation table for G, and **briefly** justify why this is the only possibility.

- (H2) Determine whether each of the following sets G form a group under the given operation *. Prove your assertions.
 - (a) $G = \{1, 3, 5, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (b) $G = \mathbb{R}; a * b = a + b + 3.$
 - (c) G is the set of nonzero real numbers; $a * b = |a| \cdot b$.
- (H3) Suppose G is a group and $a, b \in G$. Using **only group axioms**, prove $(ab)^{-1} = b^{-1}a^{-1}$. Be especially careful with associativity!
- (H4) Identify a subgroup of $GL_2(\mathbb{R})$ isomorphic to D_4 . Identify a subgroup isomorphic to \mathbb{Z}_6 .
- (H5) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) Every infinite group G has at least one proper, nontrivial subgroup.
 - (b) If (G, \cdot) is a group and $a, b, \in G$ with |a| = n and |b| = m, then $|ab| \leq \operatorname{lcm}(n, m)$.
 - (c) The group $(\mathbb{Q}, +)$ is cyclic.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) A graph H is a collection E of 2-element subsets of $\{1, \ldots, n\}$ (called *edges*). An automorphism of a graph is a permutation σ of the integers $1, \ldots, n$ such that $\{a, b\} \in E$ if and only if $\{\sigma(a), \sigma(b)\} \in E$. The set $\operatorname{Aut}(H)$ of automorphisms of a graph H is a group under composition (you are not required to prove this). For example, if H is the 4-cycle graph, with edges $\{1, 2\}, \{2, 3\}, \{3, 4\}, \text{ and } \{4, 1\}, \text{ then } \operatorname{Aut}(H) \cong D_4$.

Identify a graph H whose automorphism group $\operatorname{Aut}(H)$ is isomorphic to $(\mathbb{Z}_5, +)$.