Fall 2019, Math 620: Week 2 Problem Set
 Due: Thursday, September 12th, 2019 Permutation Groups

Discussion problems. The problems below should be completed in class.
(D1) Working with permutations. Consider the following permutations.

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 2 & 4 & 1
\end{array}\right) \quad \tau=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 6 & 3 & 8 & 2 & 5 & 7
\end{array}\right) \quad \alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 2 & 8 & 6 & 1 & 4 & 7 & 3
\end{array}\right)
$$

(a) Write each of the above permutations as a product of disjoint cycles.
(b) Find the order of each element above. Hint: do the disjoint cycles help?
(c) Write each of the above permutations as a product of 2-cycles in two different ways.
(d) Determine which of the above permutations are even, and which are odd.
(e) Is it possible to write σ or τ as a product of disjoint 2-cycles?
(f) Write σ^{-1}, τ^{-1}, and α^{-1} as a products of disjoint cycles, and as products of 2-cycles. Hint: you have already written σ, τ, and α in these forms!
(g) Determine whether σ^{91} is even or odd.
(h) Determine the orders of σ, τ, and α.
(D2) Group elements as permutations. The goal of this problem is to develop a proof of the following theorem, as well as intuition for why it holds.

Theorem. Every finite group G with $|G|=n$ is isomorphic to a subgroup of S_{n}.
(a) The goal of the first few parts is to identify a subgroup of S_{6} isomorphic to D_{3}. Choose a labeling of the elements of D_{3} as $a_{1}, a_{2}, \ldots, a_{6}$ (you may do this in any way you wish).
(b) Let $r \in D_{3}$ denote clockwise rotation by 120°. Define a permutation $\sigma \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=a_{i} r$. Verify that σ is indeed a permutation by writing it in permutation notation.
(c) Repeat the previous part for each $a \in D_{3}$ (that is, define a permutation $\sigma_{a} \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=a_{i} a$). Write down all 6 resulting permutations (you may want to "divide and conquer" amongst your groupmates to save time!).
(d) Verify in three examples that for any $a, b \in D_{3}$, the permutation corresponding to $a b$ equals the product of the permutations corresponding to a and b.
(e) Using the ideas above, find a subgroup of S_{4} isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(f) Write a formal proof of the theorem at the start of this problem.
(D3) Prove or disprove. Determine whether each of the following statements is true or false.
(a) For every $n, m \geq 2$ with $m \mid n$!, there exists an element of S_{n} of order m.
(b) There exists a subgroup of S_{6} isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
(c) There exists a subgroup of S_{6} isomorphic to \mathbb{Z}_{12}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Identify an element of S_{9} of order 20.
(H2) Let $B_{n} \subset S_{n}$ denote the set of odd permutations in S_{n}. Prove that $\left|B_{n}\right|=\left|A_{n}\right|=n!/ 2$. Hint: can you find a bijection $f: A_{n} \rightarrow B_{n}$?
(H3) Prove S_{n} is isomorphic to a subgroup of A_{n+2}.
(H4) Prove that a permutation $\sigma \in S_{n}$ is a product of disjoint 2-cycles if and only if $\sigma=\sigma^{-1}$.
(H5) Determine whether each of the following statements is true or false. Prove your assertions.
(a) For each $n \geq 3$, every permutation in S_{n} can be written as a product of 3-cycles.
(b) For each $n \geq 2$, every permutation in S_{n} is a product of at most $n-1$ transpositions.
(c) For each $n \geq 3$, every permutation in S_{n} is a product of adjacent transpositions.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Locate a generating set for S_{n} consisting of only 2 generators.

