Fall 2019, Math 620: Week 3 Problem Set Due: Thursday, September 19th, 2019 Cosets and Quotient Groups

Discussion problems. The problems below should be completed in class.

(D1) Free groups and relations. Define the free group on k generators, denoted $F = \langle a_1, \ldots, a_k \rangle$, whose elements have the form $s_1^{e_1} \cdots s_m^{e_m}$ where each $s_i \in \{a_1, \ldots, a_k\}$ and each $e_i = \pm 1$ (called words in the letters a_1, \ldots, a_k). For example,

a ab ba aabbb aab $abb^{-1}ab$

are all elements of $F = \langle a, b \rangle$, and only the last 2 are equal. Words are sometimes written more succinctly using higher exponents, e.g., $a^2b^3a^{-4} = aabbba^{-1}a^{-1}a^{-1}a^{-1}$. The normal subgroup generated by $w_1, \ldots, w_r \in F$, denoted $H = \langle w_1, \ldots, w_r \rangle$ (note the potential ambiguity with the $\langle \cdot \rangle$ notation!), is the smallest normal subgroup of F containing w_1, \ldots, w_r . The elements of H are products of conjugates of the w_i 's and their inverses, e.g.,

$$(bw_1b^{-1})((ab)w_1^{-1}(ab)^{-1})((b^2a^{-1})w_3^{-1}(b^2a^{-1})^{-1})(aw_1a^{-1}) \in H.$$

Intuitively, the elements of F/H are elements of F where we force each $w_i = e$ (we call each w_i a relation in F/H).

- (a) Let $F_1 = \langle a \rangle$ denote the free group on 1 generator. Prove $F_1 \cong \mathbb{Z}$.
- (b) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators, and let $H = \langle aba^{-1}b^{-1} \rangle$. Explain intuitively why ab = ba in $G = F_2/H$, then prove it using the definitions above.
- (c) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators, and let $H = \langle a^2, b^2, aba^{-1}b^{-1} \rangle$. How many elements does $G = F_2/H$ have?
- (d) In the previous 2 examples, what more familiar groups are isomorphic to $G = F_2/H$?
- (e) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators. For each of the following normal subgroups H and H', prove H = H' by representing each generator of H as a product of conjugates of generators of H', and visa versa.
 - (i) $H = \langle a^3 b^2 \rangle, H' = \langle b a^3 b \rangle.$
 - (ii) $H = \langle aba^{-1}b^{-1}, a^2b^3ab^4 \rangle, H' = \langle aba^{-1}b^{-1}, a^3b^7 \rangle.$
 - (iii) $H = \langle a^4 b a^{-3} b^{-2}, a^3 b^2 a^{-2} b^{-3}, a^2 b^3 a^{-1} b^{-4} \rangle$,
 - $H' = \langle a^4 b a^{-3} b^{-2}, a^3 b^2 a^{-2} b^{-3}, a^4 b a^{-1} b^{-4} \rangle.$
- (f) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators, and let $H = \langle a^4, b^2, abab \rangle$. Prove $G = F_2/H$ has 8 elements, and find a representative of each.
- (g) Prove the group from the previous part is isomorphic to D_4 .
- (h) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators, let $H = \langle a^4, b^4, a^2b^{-2}, abab^{-1} \rangle$, and let $G = F_2/H$. Find |G|, and determine whether G is Abelian.
- (i) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators, and choose $\sigma, \tau \in S_3$ that generate S_3 . Locate a normal subgroup H so that $F_2/H \cong S_3$ with $a \mapsto \sigma$ and $b \mapsto \tau$.
- (j) Let $F_2 = \langle a, b \rangle$ and $F_3 = \langle x, y, z \rangle$ denote the free groups on 2 and 3 words, respectively. Locate a (not necessarily normal) subgroup of F_2 that is isomorphic to F_3 .
- (k) Prove or disprove: $(\mathbb{Q}, +)$ is a quotient of the free group on 2 generators.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) What more familiar group is isomorphic to $GL_2(\mathbb{Z}_2)$?
- (H2) Suppose G is a group and $H \subset G$ is a subgroup. Prove $b \in aH$ if and only if bH = aH.
- (H3) Prove A_n is a normal subgroup of S_n .
- (H4) Fix a group G. Define the *center* of G as the set

$$C = \{c \in G : ca = ac \text{ for all } a \in G\}$$

of elements that commute with every element of G.

- (a) Prove C is a normal subgroup of G.
- (b) Prove or disprove: the center of G/C is trivial.
- (H5) Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators, and suppose $H \subset F_2$ is a normal subgroup. Prove F_2/H is Abelian if and only if $aba^{-1}b^{-1} \in H$.
- (H6) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) Up to isomorphism, the only non-Abelian group of order 8 is D_4 .
 - (b) Every finite group of prime order (i.e., prime cardonality) is cyclic.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Suppose p is prime. Find all groups G (up to isomorphism) with $|G| = p^2$.