Fall 2019, Math 620: Week 5 Problem Set
 Due: Thursday, October 3rd, 2019 Introduction To Rings

Discussion problems. The problems below should be worked on in class.
(D1) Checking ring axioms. Determine which of the following sets R is a ring under the given addition and multiplication. For each ring, determine whether it is (i) commutative, (ii) an integral domain, and (iii) a field.
Hint: first, write all axioms on the board for reference, and decide which axioms are satisfied "for free" when the proposed ring is a subset of a known ring with identical operation(s).
(a) The set R of 2×2 real matrices (under matrix addition/multiplication) given by

$$
R=\left\{\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{R}\right\} \subset G L_{2}(\mathbb{R})
$$

(b) The set $R=\left\{r_{5} x^{5}+\cdots+r_{1} x+r_{0}: r_{i} \in \mathbb{R}\right\} \subset \mathbb{R}[x]$ of polynomials in a variable x with real coefficients and degree at most 5 , under the usual addition and multiplication.
(c) The set $R=\mathbb{R} \cup\{\infty\}$ of real numbers together with infinity, and addition and multiplication operations $a \oplus b=\min (a, b)$ and $a \odot b=a+b$, respectively.
(d) The set $R=\mathbb{Z}$ with operations \oplus and \odot given by $a \oplus b=a+b$ and $a \odot b=a+b$ (in particular, both addition and multiplication in R correspond to integer addition).
(e) The set $R=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ continuous $\}$ of continuous real-valued functions on \mathbb{R}, where addition + is the usual addition of functions, and multiplication \odot is given by composition, e.g. $\sin (x) \odot e^{x}=\sin \left(e^{x}\right)$.
(f) The set $R=\{p(x) \in \mathbb{R}[x]: p(0) \in \mathbb{Z}\}$ of polynomials in a variable x with real coefficients and integer constant term, under the usual addition and multiplication. For example, $2 x^{2}+\frac{1}{2} x+5 \in R$ and $\frac{6}{5} x \in R$, but $5 x+\frac{1}{3} \notin R$.
(D2) Cartesian products. The Cartesian product of two rings R_{1} and R_{2} is the set

$$
R_{1} \times R_{2}=\left\{(a, b): a \in R_{1}, b \in R_{2}\right\}
$$

with addition $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and multiplication $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)$. Note: the operation in each coordinate happen in their respective rings.
(a) Determine which elements of $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$ are units, and which are zero-divisors.
(b) Suppose $m, n \geq 2$. Determine the units and zero-divisors of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
(c) Suppose R_{1} and R_{2} are rings. Determine which elements of $R_{1} \times R_{2}$ are units, in terms of the units of R_{1} and the units of R_{2}.
(d) Suppose R_{1} and R_{2} are rings. Determine which elements of $R_{1} \times R_{2}$ are zero-divisors, in terms of the zero-divisors of R_{1} and the zero-divisors of R_{2}.
(e) Suppose R_{1} and R_{2} are rings. Can there be elements of $R_{1} \times R_{2}$ that are neither units nor zero-divisors?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Let $R=\mathbb{Z}$ and define

$$
a \oplus b=a+b+1 \quad \text { and } \quad a \odot b=a b+a+b
$$

for all $a, b \in R$. Prove that (R, \oplus, \odot) is a commutative ring. Is R a field?
(H2) Consider $(C,+, \odot)$, where $C=\mathbb{R} \times \mathbb{R}$, " + " is the standard componentwise addition on $\mathbb{R} \times \mathbb{R}$, and " \odot " is given by

$$
(a, b) \odot(c, d)=(a c-b d, a d+b c)
$$

for all $(a, b),(c, d) \in C$. Prove that C is a field. Hint: this can be done without manually verifying axioms by proving straight away that C is isomorphic to a more familiar field.
(H3) Suppose $R=\left\{0_{R}, 1_{R}, a\right\}$ is a ring with 3 distinct elements. Use the ring axioms to fill in the addition table and multiplication table of R. Give a justification for each entry.
(H4) Suppose $(R,+, \cdot)$ is a ring. Prove each of the following. Identify each ring axiom you use, and try to only use one axiom in each step.
(a) If $a, b, c \in R$ with $a b=1$ and $c a=1$, then $b=c$.
(b) If R has unity and $1=0$, then $R=\{0\}$.
(H5) Determine for which $m \geq 2$ the set of non-unit elements of \mathbb{Z}_{m} is closed under both addition and multiplication. Prove your claim.
(H6) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If R is a commutative ring and $a, b \in R$ are zero divisors, then $a b$ is a zero divisor. Hint: this one is subtle!
(b) Let S be a set and $P(S)$ denote the set of all subsets of S. Define addition and multiplication operations \oplus and \odot on $P(S)$ by

$$
M \oplus N=(M \backslash N) \cup(N \backslash M) \quad \text { and } \quad M \odot N=M \cap N
$$

for all $M, N \in P(S)$. Determine whether $(P(S), \oplus, \odot)$ is a field.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Locate a ring R with unity 1_{R} and a subring $S \subset R$ with unity 1_{S} such that $1_{R} \neq 1_{S}$ (that is, the unity of S is a different element than the unity of R).

