Fall 2019, Math 620: Week 6 Problem Set
 Due: Thursday, October 10th, 2019
 Ideals and Quotient Rings

Discussion problems. The problems below should be worked on in class.
(D1) Polynomial ring quotients.
(a) What is a single element that generates the ideal $I=\left\langle x^{2}-2 x, x^{3}+5 x^{2}\right\rangle \subset \mathbb{Q}[x]$?
(b) Use the first isomorphism theorem to prove $\mathbb{Q}[x] /\langle x\rangle \cong \mathbb{Q}$.
(c) In the ring $R=\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$, prove $[x]^{2}=[-1]$. Prove $R=\{[a x+b]: a, b \in \mathbb{R}\}$.
(d) What familiar ring is $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$ isomorphic to? Prove your claim.
(e) Let $\mathbb{Q}[\sqrt{2}]=\{f(\sqrt{2}): f(x) \in \mathbb{Q}[x]\}$. What does a general element of $\mathbb{Q}[\sqrt{2}]$ look like? Write a general multiplication rule for $\mathbb{Q}[\sqrt{2}]$.
(f) Identify $\mathbb{Q}[\sqrt{2}]$ as a quotient of the polynomial ring $\mathbb{Q}[x]$.
(g) Determine whether $\mathbb{R}[x] /\left\langle x^{2}+2\right\rangle$ is an integral domain, a field, or neither. How does this differ from part (d)?
(h) Suppose R is a ring such that some $t \in R \backslash\{1,-1\}$ has $t^{2}=1$. Prove R is not a field. Find an example of such a ring.
(D2) Prime and maximal ideals. Fix a commutative ring R and an ideal I. We say I is prime if R / I is an integral domain, and I is maximal if R / I is a field.
(a) Suppose R is a field. Classify all ideas of R.
(b) Suppose I is maximal, and fix an ideal J with $I \subsetneq J \subseteq R$. What can be said about J ?
(c) State and prove an equivalent condition for I to be maximal that avoids quotient rings.
(d) Suppose I is prime, and fix ring elements $a, b \notin I$. Under what conditions is $a b \in I$?
(e) State and prove an equivalent condition for I to be prime that avoids quotient rings.
(f) Identify a ring R and a nonzero ideal $I \subset R$ that is prime but not maximal.
(g) Let $R=\mathbb{Z}[x]$ and $I=\langle 2, x\rangle$. Prove I is maximal.
(h) Identify 3 distinct maximnal ideals in $\mathbb{Q}[x, y]$.
(i) Prove or disprove: in an integral domain, every ideal is prime.
(j) Prove or disprove: the ring $\mathbb{Z}[x] /\langle x\rangle$ is a field.
(k) Prove or disprove: for every nonzero $a, b, c \in \mathbb{Q}$, we have $\mathbb{Q}[x, y] /\langle a x+b y+c\rangle \cong \mathbb{Q}[t]$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider the rings $R_{1}=\mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ and $R_{2}=\mathbb{Q}[x] /\left\langle x^{2}+1\right\rangle$.
(a) Are R_{1} and R_{2} isomorphic as additive groups?
(b) Are R_{1} and R_{2} isomorphic as rings?
(H2) Consider the ring

$$
\mathbb{Q} \llbracket x \rrbracket=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots: a_{i} \in \mathbb{Q}\right\}
$$

of formal power series with coefficients in \mathbb{Q}. Here, addition is term-by-term, and multiplication is given by distribution using the following formula.
$\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)\left(b_{0}+b_{1} x+\cdots\right)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots$
Notice that on the right side above, each coefficient involves only a finite sum! This way we avoid any questions of convergence.
(a) Determine which elements of $\mathbb{Q} \llbracket x \rrbracket$ are units.
(b) Find all maximal ideals of $\mathbb{Q} \llbracket x \rrbracket$.
(c) Prove $\mathbb{Q} \llbracket x \rrbracket /\left\langle x^{2}\right\rangle \cong \mathbb{Q}[x] /\left\langle x^{2}\right\rangle$.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Every nonzero element of $R=\mathbb{Q}[x] /\left\langle x^{2}\right\rangle$ is either a unit or a zero-divisor.
(b) The characteristic of any field is either 0 or prime.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove or disprove: any integral domain R with finitely many elements is a field.

