Fall 2019, Math 620: Week 6 Problem Set Due: Thursday, October 10th, 2019 Ideals and Quotient Rings

Discussion problems. The problems below should be worked on in class.

(D1) Polynomial ring quotients.

- (a) What is a single element that generates the ideal $I = \langle x^2 2x, x^3 + 5x^2 \rangle \subset \mathbb{Q}[x]$?
- (b) Use the first isomorphism theorem to prove $\mathbb{Q}[x]/\langle x \rangle \cong \mathbb{Q}$.
- (c) In the ring $R = \mathbb{R}[x]/\langle x^2 + 1 \rangle$, prove $[x]^2 = [-1]$. Prove $R = \{[ax + b] : a, b \in \mathbb{R}\}$.
- (d) What familiar ring is $\mathbb{R}[x]/\langle x^2+1\rangle$ isomorphic to? Prove your claim.
- (e) Let $\mathbb{Q}[\sqrt{2}] = \{f(\sqrt{2}) : f(x) \in \mathbb{Q}[x]\}$. What does a general element of $\mathbb{Q}[\sqrt{2}]$ look like? Write a general multiplication rule for $\mathbb{Q}[\sqrt{2}]$.
- (f) Identify $\mathbb{Q}[\sqrt{2}]$ as a quotient of the polynomial ring $\mathbb{Q}[x]$.
- (g) Determine whether $\mathbb{R}[x]/\langle x^2+2\rangle$ is an integral domain, a field, or neither. How does this differ from part (d)?
- (h) Suppose R is a ring such that some $t \in R \setminus \{1, -1\}$ has $t^2 = 1$. Prove R is not a field. Find an example of such a ring.
- (D2) Prime and maximal ideals. Fix a commutative ring R and an ideal I. We say I is prime if R/I is an integral domain, and I is maximal if R/I is a field.
 - (a) Suppose R is a field. Classify all ideas of R.
 - (b) Suppose I is maximal, and fix an ideal J with $I \subsetneq J \subseteq R$. What can be said about J?
 - (c) State and prove an equivalent condition for I to be maximal that avoids quotient rings.
 - (d) Suppose I is prime, and fix ring elements $a, b \notin I$. Under what conditions is $ab \in I$?
 - (e) State and prove an equivalent condition for I to be prime that avoids quotient rings.
 - (f) Identify a ring R and a nonzero ideal $I \subset R$ that is prime but not maximal.
 - (g) Let $R = \mathbb{Z}[x]$ and $I = \langle 2, x \rangle$. Prove I is maximal.
 - (h) Identify 3 distinct maximul ideals in $\mathbb{Q}[x, y]$.
 - (i) Prove or disprove: in an integral domain, every ideal is prime.
 - (j) Prove or disprove: the ring $\mathbb{Z}[x]/\langle x \rangle$ is a field.
 - (k) Prove or disprove: for every nonzero $a, b, c \in \mathbb{Q}$, we have $\mathbb{Q}[x, y]/\langle ax + by + c \rangle \cong \mathbb{Q}[t]$.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Consider the rings $R_1 = \mathbb{Q}[x]/\langle x^2 1 \rangle$ and $R_2 = \mathbb{Q}[x]/\langle x^2 + 1 \rangle$.
 - (a) Are R_1 and R_2 isomorphic as additive groups?
 - (b) Are R_1 and R_2 isomorphic as rings?
- (H2) Consider the ring

$$\mathbb{Q}[\![x]\!] = \{a_0 + a_1 x + a_2 x^2 + \dots : a_i \in \mathbb{Q}\}$$

of *formal power series* with coefficients in \mathbb{Q} . Here, addition is term-by-term, and multiplication is given by distribution using the following formula.

$$(a_0 + a_1x + a_2x^2 + \dots)(b_0 + b_1x + \dots) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$$

Notice that on the right side above, each coefficient involves only a **finite** sum! This way we avoid any questions of convergence.

- (a) Determine which elements of $\mathbb{Q}[\![x]\!]$ are units.
- (b) Find all maximal ideals of $\mathbb{Q}[\![x]\!]$.
- (c) Prove $\mathbb{Q}[\![x]\!]/\langle x^2 \rangle \cong \mathbb{Q}[x]/\langle x^2 \rangle$.

(H3) Determine whether each of the following statements is true or false. Prove your assertions.

- (a) Every nonzero element of $R = \mathbb{Q}[x]/\langle x^2 \rangle$ is either a unit or a zero-divisor.
- (b) The characteristic of any field is either 0 or prime.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove or disprove: any integral domain R with finitely many elements is a field.