Fall 2019, Math 620: Week 8 Problem SetDue: Thursday, October 31st, 2019A Hierarchy of Integral Domains

Discussion problems. The problems below should be completed in class.

- (D1) Euclidean domains. In this problem, we introduce Euclidean domains.
 - (a) Let $R = \mathbb{Z}$. For each a, b below, find $q, r \in R$ so that a = qb + r with $0 \le r < b$. (i) a = 17, b = 3. (ii) a = 15, b = 5. (iii) a = -17, b = 5.
 - (b) Let $R = \mathbb{Q}[x]$. For each a, b below, find $q, r \in R$ so that a = qb + r with $\deg(r) < \deg(b)$. (i) $a = x^5 + 3x^4 + 4x + 1$, (ii) $a = x^3 + 3x^2 + 2x + 1$, $b = x^2 + 2x + 3$. $b = 2x^2 + x + 3$.

(c) Let $R = \mathbb{Z}_5[x]$. For each a, b below, find $q, r \in R$ so that a = qb+r with $\deg(r) < \deg(b)$. (i) $a = x^5 + 3x^4 + 4x + 1$, $b = x^2 + 2x + 3$. (ii) $a = x^3 + 3x^2 + 2x + 1$, $b = 2x^2 + x + 3$.

- (d) Will the division algorithm work in F[x] for any field F? Briefly justify your answer.
- (e) Let $R = \mathbb{Z}[i]$. For each a, b below, find $q, r \in R$ so that a = qb + r with ||r|| < ||b||. (i) a = 1 + 21i, (ii) a = 10 + 15i, (iii) a = 2 + 23i, b = 2 + 3i. b = 4 + 6i. b = 1 + 2i.

Are your remainders unique?

- (f) A Euclidean domain is an integral domain R equipped with a norm $N : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for every $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ with r = 0 or N(r) < N(b)so that a = qb + r. Identify the norm function of each ring above.
- (g) Prove $\mathbb{Z}[i]$ is a Euclidean domain. Hint: choose q to be the closest point in $\mathbb{Z}[i]$ to a/b in the complex plane, write r = b(a/b q), and use ||zz'|| = ||z|| ||z'||.
- (h) Prove that in a Euclidean domain R with norm N, an element $a \in R$ is a unit if N(a) is the smallest norm achieved by the nonzero elements of R.
- (D2) Greatest common divisors. The goal of this problem is explore gcd() for Euclidean domains.
 - (a) Let $R = \mathbb{Z}$. Find gcd(42, 96) using the Euclidean algorithm.
 - (b) Show that the ideal $\langle 42, 96 \rangle \subset \mathbb{Z}$ is principle.
 - (c) Let $R = \mathbb{Q}[x]$. Find $gcd(x^6 + x^4 + x^2, x^4 + x^3 + x)$ using the Euclidean algorithm.
 - (d) Let $R = \mathbb{Z}_3[x]$. Find $gcd(x^6 + x^4 + x^2, x^4 + x^3 + x)$ using the Euclidean algorithm.
 - (e) Show that the ideal $\langle x^6 + x^4 + x^2, x^4 + x^3 + x \rangle \subset \mathbb{Z}_3[x]$ is principle.
 - (f) Propose a definition for a (not the) "greatest common divisor" of $a, b \in R$ for any integral domain R.
 - (g) Prove that if R is a Euclidean domain, then the Euclidean algorithm applied to $a, b \in R$ returns a greatest common divisor of a and b. Why is it guaranteed to finish?
 - (h) Prove that any Euclidean domain is a PID.

Homework problems. You must submit *all* homework problems in order to receive full credit.

(H1) Fix $D \in \mathbb{Z}_{>0}$, and let $R = \mathbb{Z}[\sqrt{-D}]$. Consider the function $N: R \setminus \{0\} \to \mathbb{Z}$ given by

$$N(a+b\sqrt{-D}) = a^2 + Db^2$$

for $a, b \in \mathbb{Z}$.

- (a) Prove that N(zw) = N(z)N(w) for any $z, w \in R$.
- (b) Prove that $z \in R$ is a unit if and only if N(z) = 1.
- (c) Prove that if D = -5, then R is not a UFD.
- (d) For D = -2, determine if R is a Euclidean domain, a PID, a UFD, or none of these.
- (H2) Suppose F is a field, and fix $f(x) \in F[x]$ and $a \in F$. Prove that f(a) = 0 if and only if f(x) = (x a)g(x) for some $g(x) \in F[x]$.
- (H3) Consider the ring

$$R = \{ f(x) \in \mathbb{Q}[x] : f(n) \in \mathbb{Z} \text{ for all } n \in \mathbb{Z} \}$$

of integer valued polynomials.

- (a) Prove that R is a ring with $\mathbb{Z}[x] \subsetneq R \subsetneq \mathbb{Q}[x]$.
- (b) Prove that R is not a UFD.
- (H4) Consider the ring

$$R = \{ f(x) \in \mathbb{Q}[x] : f(0) \in \mathbb{Z} \}$$

of rational polynomials with integer constant term. Prove that $x \in R$ cannot be written as a product of finitely many irreducible elements of R (we say R is not *atomic*).

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove or disprove: if $I \subset \mathbb{Z}[i]$ is any nontrivial ideal, then $\mathbb{Z}[i]/I$ has finitely many elements.