Fall 2019, Math 620: Week 11 Problem Set Due: Tuesday, November 26th, 2019 Introduction to Modules

Discussion problems. The problems below should be completed in class.

- (D1) Modules. Fix a (commutative) ring R (with unity) and (left) R-modules M, N.
 - (a) Define: (i) an *R*-module homomorphism $\varphi: M \to N$; and (ii) the kernel ker φ .
 - (b) Suppose $\varphi: M \to N$ is a homomorphism. Prove **one** of the following (both are true).
 - (i) ker φ is a submodule of M.
 - (ii) $\operatorname{Im} \varphi$ is a submodule of N.
 - (c) Conjecture a first isomorphism theorem for modules.
 - (d) Find the smallest, simplest possible generating set for R and an R-module.
 - (e) Prove that the annihilator of M, defined as

$$\operatorname{ann}(M) = \{ r \in R : rm = 0 \text{ for all } m \in M \},\$$

is an ideal of R.

- (f) Prove that $\operatorname{ann}(R/I) = I$ for any ideal I.
- (D2) Generators and relations. Let $R = \mathbb{Q}[x, y]$, and let $e_1 = (1, 0)$, $e_2 = (0, 1) \in R \oplus R$. Let $\varphi : R \oplus R \to R$ denote the *R*-module homomorphism with $e_1 \mapsto x^3$ and $e_2 \mapsto y^2$.
 - (a) Find $\varphi(1,2)$, $\varphi(xy,y^2)$, and $\varphi(x^2+2y,y^5+2y+7)$.
 - (b) Find generators for the kernel and image of φ . Justify your claims.
 - (c) In what follows, let $M = R/\operatorname{Im} \varphi$. Determine $\dim_{\mathbb{Q}}(M)$, and find a \mathbb{Q} -basis for M.
 - (d) Let $\mathfrak{m} = \langle x, y \rangle \subset R$. Characterize the elements $m \in M$ such that $\mathfrak{m}m = 0$.
 - (e) Locate an *R*-module homomorphism $\psi : R \oplus R \to R$ such that (i) $e_1, e_2 \notin \ker \psi$, and (ii) $R/\operatorname{Im} \psi$ is not a finite dimensional vector space over \mathbb{Q} .
 - (f) Determine whether $(R \oplus R) / \ker \varphi \cong R$ as *R*-modules.
- (D3) Quotient modules. Fix a (commutative) ring R (with unity) and a (left) R-module M.
 - (a) Prove that if $R = \mathbb{Z}$ and $5 \in \operatorname{ann}(M)$, then M is naturally a \mathbb{Z}_5 -module.
 - (b) Given an ideal $I \subset R$, formulate a condition under which M is an R/I module.
 - (c) Given an ideal $I \subset R$, prove IM is a submodule of M.
 - (d) Determine $\operatorname{ann}(M/IM)$. What can we conclude when combined with part (b)?
 - (e) Find a \mathbb{Z}_6 -module with 4 elements. Hint: first find one with 2 elements.
 - (f) Find all submodules of the free \mathbb{Z}_4 -module $\mathbb{Z}_4 \oplus \mathbb{Z}_4$. Organize them by containment.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Fix rings R and T, a ring homomorphism $\varphi : R \to T$, and a T-module M. Prove that M is ("naturally") an R-module via the action $r \cdot m = \varphi(r)m$.
- (H2) Fix a ring R and an R-module M, and fix $m \in M$. Prove that there exists a unique R-module homomorphism $\varphi: R \to M$ satisfying $\varphi(1) = m$.
- (H3) Let $I = \langle x, y \rangle \subset R = \mathbb{Q}[x, y]$, and fix an *R*-module *M* and elements $m, m' \in M$.
 - (a) Determine the exact conditions under which there exists an *R*-module homomorphism $\varphi: I \to M$ satisfying $\varphi(x) = m$ and $\varphi(y) = m'$.
 - (b) Prove that when such a homomorphism φ exists, it is unique.
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) Fix a ring R. Any R-module homomorphism $R \oplus R \to R$ must have nontrivial kernel.
 - (b) Given any \mathbb{Z} -module M, there exists a unique way to extend the \mathbb{Z} -action on M to a \mathbb{Q} -action that makes M into a \mathbb{Q} -module.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Let $R = \mathbb{Q}[x, y]$, and let $I = \langle x^3, xy, y^2 \rangle \subset R$. Locate free modules F_0 , F_1 , and F_2 along with homomorphisms

$$0 \longrightarrow F_2 \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} R/I \longrightarrow 0$$

such that φ_0 is injective, φ_2 is injective, $\ker \varphi_0 = \operatorname{Im} \varphi_1$, and $\ker \varphi_1 = \operatorname{Im} \varphi_2$.