Fall 2019, Math 620: Week 12 Problem Set Due: Tuesday, December 10th, 2019 Categories and Universal Properties

Discussion problems. The problems below should be completed in class.

- (D1) Kernels. Recall that the kernel of a morphism $f : A \to B$ in a category C is an object K together with a morphism $g : K \to A$ such that (i) the composition $f \circ g = 0$, and (ii) for any object K' and morphism $g' : K' \to A$ with $f \circ g' = 0$, there exists a unique morphism $h : K' \to K$ such that $g \circ h = g'$.
 - (a) Without looking at your notes, draw the commutative diagram for kernels.
 - (b) Let $\varphi : \mathbb{Z} \to \mathbb{Z}_{12}$ denote the group homomorphism given by $\varphi(a) = [4a]_{12}$. Prove that $K = \ker \varphi$ with the inclusion map $g : K \hookrightarrow \mathbb{Z}$ satisfies the universal property above.
 - (c) Prove that every morphism in the category Ab has a (categorical) kernel that coincides with what we have been calling the "kernel" all semester.
 - (d) Prove that in any category C in which every morphism has a kernel (as defined above), the morphism g must be a monomorphism. Be careful: morphisms might not be "functions" in general!
- (D2) Products. Recall the product $A \prod B$ of two objects A and B in a category C, defined below.

- (a) Without looking at your notes, write the full definition of $A \times B$ in words.
- (b) Fix an index set \mathcal{I} and a collection of objects A_i for $i \in \mathcal{I}$ in a category \mathcal{C} . Give a definition of the *product* $\prod_{i \in \mathcal{I}} A_i$. Use both words and a commutative diagram.
- (c) In the category Ab, prove that (categorical) products are simply Cartesian products.
- (D3) *Duals.* Given a universal object (e.g., kernels, products), the *dual* is obtained by reversing the directions of all of the arrows in the accompanying commutative diagram.
 - (a) Write the definition of *coproduct* (the categorical dual of the product) of two objects A and B in a category C. Denote this object by $A \amalg B$.
 - (b) In the category Ab, determine what familiar group $\mathbb{Z} \amalg \mathbb{Z}_6$ is.
 - (c) Demonstrate that in the category Ab, finite coproducts are simply finite products.
 - (d) Determine whether $\coprod_{i=1}^{\infty} \mathbb{Z}$ is isomorphic to $\prod_{i=1}^{\infty} \mathbb{Z}$ in Ab.
 - (e) Conjecture which familiar objects are coproducts in Ab.
 - (f) Write the definition of *cokernel* (the categorical dual of the kernel) of two objects A and B in a category C.
 - (g) Find the cokernel of the \mathbb{Z} -module homomorphism $f: \mathbb{Z} \to \mathbb{Z}_{12}$ given by f(a) = [4a].
 - (h) Conjecture, in general, what the cokernel of an *R*-module homomorphism is.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Given a category C and a morphism $f : A \to B$, the *image* of f (if it exists) is an object I together with a monomorphism $m : I \to B$ such that
 - there exists a map $e: A \to I$ such that $m \circ e = f$; and
 - the following universal property is satisfied: for any object I', morphism $e' : A \to I'$, and monomorphism $m' : I' \to B$ satisfying the above requirements, there exists a unique morphism $v : I \to I'$ such that the following diagram commutes.

Prove that for any ring R in Slt, the category R-Mod has images.

- (H2) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) The category Slt has both (arbitrary) products and (arbitrary) coproducts.
 - (b) The category Slt has kernels.