Fall 2019, Math 620 Final Exam Review

The problems below are intended to help you review for the midterm exam, and may *not* be turned in for credit.

- (ER1) Determine whether there exists an ideal $I \subset \mathbb{Z}[i]$ such that $\mathbb{Z}[i]/I$ is isomorphic to \mathbb{Z}_3 .
- (ER2) Find the **degree** of the splitting field of $f(x) = x^8 1$ over \mathbb{Q} .
- (ER3) Determine for which q every element of the finite field \mathbb{F}_q has a square root in \mathbb{F}_q .
- (ER4) Factor $x^5 + 2x^4 + 2x^3 + 2x + 2 \in \mathbb{Z}_3[x]$ as a product of irreducibles.
- (ER5) Fix a ring R, an R-module M, and submodules $N, N' \subset M$. Prove that $N \cap N'$ and

$$N + N' = \{n + n' : n \in N, n' \in N'\}$$

are submodules of M.

- (ER6) Let $R = \mathbb{Q}[x]$, and consider the *R*-module $M = R/\langle x^2 \rangle$. Find all submodules of *M*.
- (ER7) Let $R = \mathbb{Q}[x, y]$. Find generators for the kernel and image of the *R*-module homomorphism $\varphi : R^2 \to R$ given by $(a, b) \mapsto ax + by$.
- (Bonus) Determine the initial and terminal objects in the category Slt, if any exist.
- (Challenge) Let $R = \mathbb{Q}[x, y]/\langle xy \rangle$, and let $M = R/\langle x \rangle$. Locate free *R*-modules F_0, F_1, \ldots along with *R*-module homomorphisms

$$\cdots \to F_2 \to F_1 \to F_0 \to M \to 0$$

so that the kernel of each map is equal to the image of the previous map.