Fall 2019, Math 620

Final Exam Review

The problems below are intended to help you review for the midterm exam, and may not be turned in for credit.
(ER1) Determine whether there exists an ideal $I \subset \mathbb{Z}[i]$ such that $\mathbb{Z}[i] / I$ is isomorpihc to \mathbb{Z}_{3}.
(ER2) Find the degree of the splitting field of $f(x)=x^{8}-1$ over \mathbb{Q}.
(ER3) Determine for which q every element of the finite field \mathbb{F}_{q} has a square root in \mathbb{F}_{q}.
(ER4) Factor $x^{5}+2 x^{4}+2 x^{3}+2 x+2 \in \mathbb{Z}_{3}[x]$ as a product of irreducibles.
(ER5) Fix a ring R, an R-module M, and submodules $N, N^{\prime} \subset M$. Prove that $N \cap N^{\prime}$ and

$$
N+N^{\prime}=\left\{n+n^{\prime}: n \in N, n^{\prime} \in N^{\prime}\right\}
$$

are submodules of M.
(ER6) Let $R=\mathbb{Q}[x]$, and consider the R-module $M=R /\left\langle x^{2}\right\rangle$. Find all submodules of M.
(ER7) Let $R=\mathbb{Q}[x, y]$. Find generators for the kernel and image of the R-module homomorphism $\varphi: R^{2} \rightarrow R$ given by $(a, b) \mapsto a x+b y$.
(Bonus) Determine the initial and terminal objects in the category Slt, if any exist.
(Challenge) Let $R=\mathbb{Q}[x, y] /\langle x y\rangle$, and let $M=R /\langle x\rangle$. Locate free R-modules F_{0}, F_{1}, \ldots along with R-module homomorphisms

$$
\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

so that the kernel of each map is equal to the image of the previous map.

