Fall 2020, Math 579: Problem Set 1

Due: Thursday, September 3rd, 2020 Induction

Discussion problems. The problems below should be worked on in class.
(D1) Strong induction. Fix a statement $P(n)$ dependent on n, and suppose that:

- $P(1)$ holds (the base case); and
- if $P(k)$ holds for all $1 \leq k \leq n$, then $P(n+1)$ holds (the inductive step).

We can conclude that $P(n)$ holds for all n. This technique is called strong induction on n. (How does this differ from usual (weak) induction?)
(a) Locate and correct the error in the following proof that for any $n \in \mathbb{Z}_{\geq 0}$, there exist $q, r \in \mathbb{Z}_{\geq 0}$ with $0 \leq r \leq 5$ such that $n=6 q+r$.

Proof. Let $P(n)$ denote the following statement.
"There exist $q, r \in \mathbb{Z}_{\geq 0}$ with $0 \leq r \leq 5$ such that $n=6 q+r$."
Base cases: suppose $n=0,1,2,3,4$, or 5 . Choosing $q=0$ and $r=n$, we see $6 q+r=n$. Inductive step: suppose $n \geq 6$ and that $P(n-6)$ holds (the inductive hypothesis). This implies $n-6=6 q^{\prime}+r^{\prime}$ for some $q^{\prime}, r^{\prime} \in \mathbb{Z}$ with $0 \leq r^{\prime} \leq 5$. Rearranging yields $n=6\left(q^{\prime}+1\right)+r^{\prime}$, and choosing $q=q^{\prime}+1$ and $r=r^{\prime}+1$ completes the proof.
(b) Prove the following results using induction. For each, indicate whether your proof uses strong induction or weak induction.
(i) Prove that for every $n \geq 1$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(ii) Define $a_{0}=0$ and

$$
a_{n}=a_{0}+\cdots+a_{n-1}+1
$$

for $n \geq 1$. Find a formula for a_{n} by experimentation, then prove it.
(iii) Prove that

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

for all $n \geq 1$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider the function

$$
f(n)=2^{2}+4^{2}+\cdots+(2 n)^{2}=\sum_{i=1}^{n}(2 i)^{2} .
$$

(a) Use induction on n to prove that

$$
f(n)=\frac{2 n(n+1)(2 n+1)}{3}
$$

(b) Use Problem (D1)(b)(i) to find an analogous formula for

$$
g(n)=1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\sum_{i=1}^{n}(2 i-1)^{2}
$$

in terms of n (induction is not required for this problem).
(H2) Suppose $g_{0}=0, g_{1}=1$, and $g_{n}=g_{n-1}+g_{n-2}$ for $n \geq 2$. Use induction to prove that

$$
g_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

holds for all $n \geq 0$. Does your proof use strong induction?
(H3) Let $a_{0}=0$ and $a_{n}=a_{n-1}+2 n-1$ for $n \geq 1$. Conjecture a formula for a_{n} in terms of n. Use induction to prove your claim.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) A round robin tournament is a tournament in which any 2 players compete against each other exactly once. Prove the round robin tournament theorem: if $n \geq 2$ is even, then there exists an n-player tournament with $n-1$ rounds, and $n \geq 1$ is odd, then there is an n-player tournament with n rounds (each player can play at most one game in a single round).

