Fall 2020, Math 579: Problem Set 8
Due: Thursday, October 22nd, 2020 Recurrence Relations and Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Formal power series.
(a) Fill in the blank in each of the following.
(i) $\sum_{n=0}^{\infty} z-=\frac{2}{1-3 z^{2}}$.
(ii) $\sum_{n=0}^{\infty} z-=\frac{z}{2+z}$.
(b) Write each of the following as a rational function in z.
(i) $A(z)=\sum_{n=0}^{\infty} 2^{n-1} z^{n}$.
(ii) $A(z)=\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n} z^{n}$.
(D2) Solving recurrence relations with generating functions. For each of the following, (i) compute a_{0}, \ldots, a_{5}, (ii) use generating functions to find a formula for a_{n} in terms of n, and (iii) verify your formula for $n \leq 5$.
(a) $a_{0}=1, a_{1}=2, a_{n}=4 a_{n-2}$ for $n \geq 2$.
(b) $a_{0}=1, a_{n}=2 a_{n-1}+1$ for $n \geq 1$.
(c) $a_{0}=3, a_{1}=1, a_{n}=2 a_{n-1}+3 a_{n-2}$ for $n \geq 2$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use generating functions to find a_{n} if $a_{0}=1$ and $a_{n}=3 a_{n-1}+2^{n}$ for $n \geq 1$.
(H2) Use generating functions to find L_{n} if $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$.
Hint: we have $1-z-z^{2}=(1-\omega z)(1-\bar{\omega} z)$, where

$$
\omega=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \bar{\omega}=\frac{1-\sqrt{5}}{2} .
$$

(H3) Define $c(n)=1$ if there exists a way to write n as a sum of the values 3 and 5 , and $c(n)=0$ otherwise. For instance, $c(13)=1$ since $13=3+5+5$, and $c(15)=1$ since $15=5+5+5$ (as well as $15=3+3+3+3+3$), but $c(7)=0$ since there is no way to add 3 's and 5 's together to obtain 7. Prove that

$$
\sum_{n=0}^{\infty} c(n) z^{n}=\frac{1-z^{15}}{\left(1-z^{3}\right)\left(1-z^{5}\right)}
$$

Conjecture an analogous result if positive integers n_{1} and n_{2} replace 3 and 5 . Note: you are not required to prove your conjecture.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove your conjecture from Problem (H3).

