Fall 2020, Math 579: Problem Set 9
 Due: Thursday, October 29th, 2020 Combinatorics of Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Integer partitions via generating functions. Recall that $p(n)$ denotes the number of integer partitions of n (that is, the number of ways to write n as a sum of (unordered) positive integers), and that

$$
P(z)=\sum_{n=0}^{\infty} p(n) z^{n}=\prod_{i=1}^{\infty} \frac{1}{1-z^{i}}
$$

(a) Let $p_{\text {odd }}(n)$ denote the number of partitions of n with all odd parts. Show $p_{\text {odd }}(6)=4$.
(b) Find an expression for $\sum_{n=0}^{\infty} p_{\text {odd }}(n) z^{n}$ by modifying the one for $P(z)$ above.
(c) Let $p_{\text {dis }}(n)$ denote the number of partitions of n in which no part appears more than once. Show $p_{\text {dis }}(6)=4$.
(d) Find an expression for $\sum_{n=0}^{\infty} p_{\text {dis }}(n) z^{n}$ by modifying the one for $P(z)$ above. Hint: how many times can " 7 " appear in a partition when all parts have to be distinct?
(e) Prove that $p_{\text {odd }}(n)=p_{\text {dis }}(n)$ for all $n \geq 0$ by proving that

$$
\sum_{n \geq 0} p_{\text {odd }}(n) z^{n}=\sum_{n \geq 0} p_{\text {dis }}(n) z^{n}
$$

using your expressions for the left and right hand sides in previous parts.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Let m_{n} denote the number of ways to express $n \geq 0$ as a sum the integers 6,9 and 20 . For instance, $m_{18}=2$ since $18=6+6+6=9+9$, and $m_{26}=1$ since $26=6+20$ is the only way to write 26 as such a sum. Find a rational expression for the ordinary generating function of m_{n}. Do not attempt to find a formula for m_{n} !
(H2) For each of the following, find the an expression for the (ordinary) generating function $D(z)=\sum_{n=0}^{\infty} d_{n} z^{n}$ using the combinatorial interpretation of multiplication of power series. Note: your final answer to each part should be a rational expression for $D(z)$ in terms of z, and should not have any infinite sums or products. In particular, you are not required to find a formula for d_{n} !
(a) Suppose our course meets for n days. Let d_{n} denote the number of ways to split the available days into 3 units (counting methods, graph theory, and generating functions),
(i) select, from the first unit, some nonempty collection of days for a pop quiz,
(ii) select, from the second unit, an odd number of days to hold discussions, and
(iii) select, from the third unit, exactly 2 days in which to give an exam.
(b) What if in part (a), each unit should be at least 2 days long?
(c) What if in part (a), exactly half of the days in the first unit must have a pop quiz, and they must alternate days (either quiz, no quiz, quiz, no quiz, etc; or no quiz, quiz, no quiz, quiz, etc)?
(H3) Choose one of the parts of the previous problem, and use the generating function expression you obtained to find a formula for d_{n}. You may use a computer (e.g., WolframAlpha) to perform the partial fractions step for you.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) It is known that for each $d \geq 1$, we have

$$
\sum_{n \geq 0} n^{d} z^{n}=\frac{Q_{d}(z)}{(1-z)^{d+1}}
$$

for some polynomial $Q_{d}(z)$. Find a general formula, in terms of d, for the degree of $Q_{d}(z)$, the leading coefficient of $Q_{d}(z)$, and $Q_{d}(1)$ (that is, the sum of the coefficients of $Q_{d}(z)$).

