Fall 2020, Math 579: Problem Set 10
Due: Thursday, November 5th, 2020
Composition of Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Combinatorics of generating functions. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Recall that the coefficients of $A(z) B(z)$ can be interpreted as the number of ways to

- split $[n]$ into two (possibly empty) subintervals $\{1, \ldots, k\}$ and $\{k+1, \ldots, n\}$,
- place an " a-structure" on the first subinterval, and
- place a " b-structure" on the second subinterval.

Likewise, if $b_{0}=0$, the coefficients of $A(B(z))$ can be interpreted as the number of ways to

- split the set $[n]$ into some number of nonempty subintervals,
- place a b-structure on each subinterval, and
- place an a-structure on the set of subintervals.
(a) Let $A(z)=\sum_{n=1}^{\infty} z^{n}$. Using the fact that $A(z)=z /(1-z)$, find (algebraically) the coefficients of $A(A(z))$.
(b) Interpret the coefficients of $A(A(z))$ combinatorially. Verify this matches part (c).
(c) Let $B(z)=1 /(1-z)$. Interpret the coefficients of $A(B(z))$ combinatorially. Note: this is not valid since $b_{0} \neq 0$. Reconcile this with your answer.
(d) Let $c_{n}=n$ denote the number of ways to pick a person from a lineup of n people, and let $C(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ denote its generating function. With $A(z)=\sum_{n=1}^{\infty} z^{n}$ as above, describe what the coefficients of $C(A(z))$ represent, and find a formula using algebra.
(e) Interpret the coefficients of $A(C(z))$, then find a formula.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Let

$$
A(z)=\frac{z^{2}}{(1-z)^{3}} \quad \text { and } \quad B(z)=\frac{z}{(1-z)^{2}}
$$

Find a combinatorial interpretation of the coefficients of $A(B(z))$. You are not required to find a formula for the coefficients.
Note: your answer should be a word problem, e.g., involving a lineup of soldiers.
(H2) A permutation of $[n]=\{1, \ldots, n\}$ is called indecomposable if it cannot be split into a permutation on $\{1, \ldots, k\}$ and a permutation on $\{k+1, \ldots, n\}$ for $1 \leq k \leq n-1$. For example, 54321 is indecomposable, but 23154 can be decomposed as 231 and then 54 .
Let c_{n} denote the number of indecomposable permutations on $[n]$, and let $c_{0}=0$. Find an equation relating the generating function $C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ and the generating function for the number of permutations of $[n]$, that is, $P(z)=\sum_{n=0}^{\infty}(n!) z^{n}$.
(H3) Let

$$
\begin{aligned}
& A(z)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}=z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\frac{1}{7!} z^{7}+\cdots \\
& B(z)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n)!} z^{2 n}=1-\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4}-\frac{1}{6!} z^{6}+\cdots
\end{aligned}
$$

(a) Show that $A^{\prime}(z)=B(z)$ and $B^{\prime}(z)=-A(z)$.
(b) Using part (a), show that $2 A(z) A^{\prime}(z)+2 B(z) B^{\prime}(z)=0$.
(c) Use part (b) to argue that $(A(z))^{2}+(B(z))^{2}=1$. Thinking back to Calculus 2, what familiar identity does this equality encode?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) For each integer $t \geq 0$, consider the generating function

$$
\frac{z e^{t z}}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(t)}{n!} z^{n}
$$

Prove that $B_{n}(t)$ is a polynomial in t of degree n.

