Fall 2020, Math 579: Problem Set 10 Due: Thursday, November 5th, 2020 Composition of Generating Functions

Discussion problems. The problems below should be worked on in class.

- (D1) Combinatorics of generating functions. Let $A(z) = \sum_{n=0}^{\infty} a_n z^n$ and $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Recall that the coefficients of A(z)B(z) can be interpreted as the number of ways to
 - split [n] into two (possibly empty) subintervals $\{1, \ldots, k\}$ and $\{k+1, \ldots, n\}$,
 - place an "a-structure" on the first subinterval, and
 - place a "b-structure" on the second subinterval.

Likewise, if $b_0 = 0$, the coefficients of A(B(z)) can be interpreted as the number of ways to

- split the set [n] into some number of nonempty subintervals,
- place a *b*-structure on each subinterval, and
- place an *a*-structure on the set of subintervals.
- (a) Let $A(z) = \sum_{n=1}^{\infty} z^n$. Using the fact that A(z) = z/(1-z), find (algebraically) the coefficients of A(A(z)).
- (b) Interpret the coefficients of A(A(z)) combinatorially. Verify this matches part (c).
- (c) Let B(z) = 1/(1-z). Interpret the coefficients of A(B(z)) combinatorially. Note: this is not valid since $b_0 \neq 0$. Reconcile this with your answer.
- (d) Let $c_n = n$ denote the number of ways to pick a person from a lineup of n people, and let $C(z) = \sum_{n=1}^{\infty} c_n z^n$ denote its generating function. With $A(z) = \sum_{n=1}^{\infty} z^n$ as above, describe what the coefficients of C(A(z)) represent, and find a formula using algebra.
- (e) Interpret the coefficients of A(C(z)), then find a formula.

Homework problems. You must submit *all* homework problems in order to receive full credit.

(H1) Let

$$A(z) = \frac{z^2}{(1-z)^3}$$
 and $B(z) = \frac{z}{(1-z)^2}$.

Find a combinatorial interpretation of the coefficients of A(B(z)). You are **not** required to find a formula for the coefficients.

Note: your answer should be a word problem, e.g., involving a lineup of soldiers.

(H2) A permutation of $[n] = \{1, ..., n\}$ is called *indecomposable* if it cannot be split into a permutation on $\{1, ..., k\}$ and a permutation on $\{k+1, ..., n\}$ for $1 \le k \le n-1$. For example, 54321 is indecomposable, but 23154 can be decomposed as 231 and then 54.

Let c_n denote the number of indecomposable permutations on [n], and let $c_0 = 0$. Find an equation relating the generating function $C(z) = \sum_{n=0}^{\infty} c_n z^n$ and the generating function for the number of permutations of [n], that is, $P(z) = \sum_{n=0}^{\infty} (n!) z^n$.

(H3) Let

$$A(z) = \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = z - \frac{1}{3!} z^3 + \frac{1}{5!} z^5 - \frac{1}{7!} z^7 + \cdots$$
$$B(z) = \sum_{n \ge 0} \frac{(-1)^n}{(2n)!} z^{2n} = 1 - \frac{1}{2!} z^2 + \frac{1}{4!} z^4 - \frac{1}{6!} z^6 + \cdots$$

- (a) Show that A'(z) = B(z) and B'(z) = -A(z).
- (b) Using part (a), show that 2A(z)A'(z) + 2B(z)B'(z) = 0.
- (c) Use part (b) to argue that $(A(z))^2 + (B(z))^2 = 1$. Thinking back to Calculus 2, what familiar identity does this equality encode?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) For each integer $t \ge 0$, consider the generating function

$$\frac{ze^{tz}}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n(t)}{n!} z^n.$$

Prove that $B_n(t)$ is a polynomial in t of degree n.