Fall 2020, Math 579: Problem Set 13

Due: Thursday, December 3rd, 2020
Graph Colorings
(D1) Chromatic polynomials. Fix a graph G with $n=|V(G)|$. The chromatic function of G is

$$
\chi_{G}(k)=\# \text { proper colorings of } G \text { with } k \text { colors. }
$$

(a) Find the chromatic function $\chi_{G}(k)$, where G is each of the following graphs.
(i) The competely disconnected graph D_{n} with n vertices and no edges.
(ii) The complete graph K_{n}.
(b) Let c_{i} denote the number of ways to properly color G using exactly i colors. Consider (without proof, for the moment) the equality

$$
\chi_{G}(k)=\sum_{i=1}^{n}\binom{k}{i} c_{i}=\binom{k}{1} c_{1}+\binom{k}{2} c_{2}+\cdots+\binom{k}{n} c_{n}
$$

for all $k \geq 1$. Use this to find $\chi_{G}(k)$ for $G=K_{3}$, and verify it matches part (a).
(c) Give a combinatorial proof of the identity in part (b).
(d) Using the fact that $\binom{k}{i}=\frac{1}{i!} k(k-1) \cdots(k-i+1)$ is a polynomial in k of degree i, deduce from part (b) that $\chi_{G}(k)$ is a polynomial in k of degree n.
(e) If a graph G has a loop, what can be said about $\chi_{G}(k)$?
(f) Fix an edge $e \in E(G)$. Consider (without proof, for the moment) the equality

$$
\chi_{G}(k)=\chi_{G \backslash e}(k)-\chi_{G / e}(k)
$$

Using only this equality and part (a)(i), find the chromatic polynomial of $G=K_{3}$.
(g) Use the equality in part (e) to give an inductive proof that $\chi_{G}(k)$ is a polynomial. Does this proof guarantee that the coefficients of $\chi_{G}(k)$ are all integers?
Hint: use part (a)(i) as your base case.
(h) Give a combinatorial proof of the equality in part (f).

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the chromatic polynomial of each of the following graphs.
(a) The graph G with 5 vertices v_{1}, \ldots, v_{5} in which v_{1} and v_{5} both have v_{2}, v_{3}, and v_{4} as neighbors (this yields a total of 6 edges).
(b) The graph G obtained from K_{n} by removing one edge.
(H2) Fix a connected graph G with n vertices. Prove that G is a tree if and only if

$$
\chi_{G}(k)=k(k-1)^{n-1}
$$

Hint: use Problem (H3) for the backwards direction.
(H3) Fix a graph G with n vertices and m edges.
(a) Prove that the leading coefficient of $\chi_{G}(k)$ (that is, the coefficient of k^{n}) is 1 .
(b) Prove that the coefficient of k^{n-1} in the chromatic polynomial $\chi_{G}(k)$ equals $-m$.

Hint: each part of this problem can be proven in (at least) 2 distinct ways: one way uses a direct proof and the equation in Problem (D1)(b); another uses induction and the equation in Problem (D1)(f).

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Solve all parts of Problem (H3) using a different method than you already did.

