Fall 2020, Math 579: Problem Set 15
 Due: Friday, December 11th, 2020
 Bipartite Graphs and Planar Graphs

Discussion problems. The problems below should be completed in class.
(D1) Hall's Theorem. Given a graph G and $T \subset V(G)$, let $N(T)$ denote the set of neighbors of vertices in T. In this problem, you will examine the following result in some special cases.

Theorem. Fix a bipartite graph $G=(X, Y)$. There exists a perfect matching of X into Y if and only if $|T| \leq|N(T)|$ for all $T \subset X$.
(a) Verify Hall's Theorem holds in the 4 special cases when $|X|=1,|X|=2,|Y|=1$ and $|Y|=2$.
(b) Prove the forward direction of Hall's Theorem.
(D2) Counting faces of planar graphs. For a planar graph G, let V, E, and F denote the number of vertices, edges, and faces of G, respectively.
(a) Compute the quantity $V-E+F$ for each of the following graphs.

(b) Have each group member draw their favorite connected planar graph with at least 8 vertices and 15 edges, and compute $V-E+F$ for their graph.
(c) Notice this came out the same for each graph. This is known as Euler's theorem for planar, connected graphs. We will prove this by induction on E.
(i) Base case: prove Euler's theorem when $E=V-1$. Why is this the base case?
(ii) Carefully and precisely, write the inductive hypothesis.
(iii) What can happen when an edge $e \in E(G)$ is removed?
(iv) Finish your proof that Euler's theorem holds for any planar graph G.
(D3) Duals of planar graphs and a test for planarity. For a planar graph G, let V, E, and F denote the number of vertices, edges, and faces of G, respectively.
(a) Use Euler's Theorem to give a non-pictorial proof that K_{5} is not planar. Hint: how many faces would it have, and how sides would each face need to have?
(b) Use Euler's Theorem to give a non-pictorial proof that $K_{3,3}$ is not planar.

Hint: is it possible for a face to have 3 boundary edges?
(c) Fix a simple (not necessarily planar!) graph G with V vertices and E edges.
(a) Prove that if G is planar, then $3 F \leq 2 E$.
(b) Prove that if G is planar, then $E \leq 3 V-6$.
(c) Is it true that any connected graph satisfying $E \leq 3 V-6$ is planar?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Which of the following can be the degrees of the vertices of a bipartite graph?
(a) $3,3,3,3,3,3$ (6 vertices total)
(b) $3,3,3,3,3,3,3,3$ (8 vertices total)
(c) $3,3,3,3,3,5,6,6,6$ (9 vertices total)
(H2) Suppose G is a bipartite graph in which every vertex has degree k. Prove that G has a perfect matching.
(H3) OMITTED
(H4) Suppose for a given planar graph G, each face of G (including the "outside" one!) has either 3 or 5 boundary edges. Prove that the number of faces of G is even.
(H5) Prove that if any 2 edges are removed from the graph K_{6}, the result is not planar. Is the same true if we remove 3 edges?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix $n \geq 1$ and $k<n / 2$. Let $G=(X, Y)$ denote a bipartite graph so that X consists of the k-element subsets of $[n], Y$ consists of the $(k+1)$-element subsets of $[n]$, and $(x, y) \in E(G)$ for $x \in X$ and $y \in Y$ precisely when $x \subset y$. Find a perfect matching for X into Y.

