Fall 2020, Math 620: Week 1 Problem Set Due: Thursday, September 3rd, 2020 Introduction to Groups

Discussion problems. The problems below should be completed in class.

- (D1) Checking group axioms. Determine which (if any) of the group axioms are violated by each of the following sets G under the given operation *. Brief justifications are sufficient for this problem (no formal proof is required).
 - (a) $G = \mathbb{Z}; a * b = a b.$
 - (b) $G = \mathbb{Z}_{>0}; a * b = a + b.$
 - (c) $G = \mathbb{Z}_{10}$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (d) $G = \{1, 3, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (e) $G = \mathbb{R} \times \mathbb{R}; (a, b) * (c, d) = (ac, bd).$
- (D2) Group element orders. For a group (G, \cdot) and $a \in G$, the order of a, denoted |a|, is the smallest $n \in \mathbb{Z}_{>1}$ such that $a^n = e$, or $|a| = \infty$ is no such k exists.
 - (a) Find the order of each element of D_4 . Do the same for \mathbb{Z} .
 - (b) Fix a group (G, \cdot) and an element $a \in G$ with |a| = n. Fill in the gaps in the following proof that $a^k = e$ if and only if $n \mid k$ (you may insert extra blanks if you prefer).

Proof. Suppose $a^k = e$, and write k = qn + r for some $q, r \in \mathbb{Z}$ with $0 \le r < n$. Then

$$e = a^{k} = a^{qn+r}$$

$$=$$

$$=$$

$$=$$

$$= a^{r},$$

so by the minimality of n, we must have r = 0. As such, $n \mid k$.

(c) Prove that if G is finite and $a \in G$, then |a| is finite.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Determine whether each of the following sets G form a group under the given operation *. Prove your assertions.
 - (a) $G = \{1, 3, 5, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (b) $G = \mathbb{R}; a * b = a + b + 3.$
 - (c) G is the set of nonzero real numbers; $a * b = |a| \cdot b$.
- (H2) Suppose G is a group and $a, b, c \in G$. Prove each of the following statements Using **only group axioms**, prove that if ab = ac, then b = c. Be especially careful with associativity! In particular, any triple products xyz should be written as either (xy)z or x(yz).
- (H3) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) If (G, \cdot) is a group and $a, b \in G$, then $(ab)^{-1} = b^{-1}a^{-1}$.
 - (b) If (G, \cdot) is a group and $a, b, \in G$ with |a| = n and |b| = m, then $|ab| \leq \operatorname{lcm}(n, m)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

- (C1) Suppose (G, *) is a group, where $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and * is an operation satisfying
 - (i) $a * b \le a + b$ for every $a, b \in G$, and
 - (ii) a * a = 0 for every $a \in G$.

Write out the operation table for G, and **briefly** justify why this is the only possibility.