Fall 2020, Math 620: Week 1 Problem Set
 Due: Thursday, September 3rd, 2020 Introduction to Groups

Discussion problems. The problems below should be completed in class.
(D1) Checking group axioms. Determine which (if any) of the group axioms are violated by each of the following sets G under the given operation *. Brief justifications are sufficient for this problem (no formal proof is required).
(a) $G=\mathbb{Z} ; a * b=a-b$.
(b) $G=\mathbb{Z}_{\geq 0} ; a * b=a+b$.
(c) $G=\mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(d) $G=\{1,3,7,9\} \subset \mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(e) $G=\mathbb{R} \times \mathbb{R} ;(a, b) *(c, d)=(a c, b d)$.
(D2) Group element orders. For a group (G, \cdot) and $a \in G$, the order of a, denoted $|a|$, is the smallest $n \in \mathbb{Z}_{\geq 1}$ such that $a^{n}=e$, or $|a|=\infty$ is no such k exists.
(a) Find the order of each element of D_{4}. Do the same for \mathbb{Z}.
(b) Fix a group (G, \cdot) and an element $a \in G$ with $|a|=n$. Fill in the gaps in the following proof that $a^{k}=e$ if and only if $n \mid k$ (you may insert extra blanks if you prefer).

Proof. Suppose $a^{k}=e$, and write $k=q n+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<n$. Then

$$
\begin{aligned}
e & =a^{k}=a^{q n+r} \\
& = \\
& = \\
& =a^{r},
\end{aligned}
$$

so by the minimality of n, we must have $r=0$. As such, $n \mid k$.
(c) Prove that if G is finite and $a \in G$, then $|a|$ is finite.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Determine whether each of the following sets G form a group under the given operation *. Prove your assertions.
(a) $G=\{1,3,5,7,9\} \subset \mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(b) $G=\mathbb{R} ; a * b=a+b+3$.
(c) G is the set of nonzero real numbers; $a * b=|a| \cdot b$.
(H2) Suppose G is a group and $a, b, c \in G$. Prove each of the following statements Using only group axioms, prove that if $a b=a c$, then $b=c$. Be especially careful with associativity! In particular, any triple products $x y z$ should be written as either $(x y) z$ or $x(y z)$.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If (G, \cdot) is a group and $a, b \in G$, then $(a b)^{-1}=b^{-1} a^{-1}$.
(b) If (G, \cdot) is a group and $a, b, \in G$ with $|a|=n$ and $|b|=m$, then $|a b| \leq \operatorname{lcm}(n, m)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $(G, *)$ is a group, where $G=\{0,1,2,3,4,5,6,7\}$ and $*$ is an operation satisfying
(i) $a * b \leq a+b$ for every $a, b \in G$, and
(ii) $a * a=0$ for every $a \in G$.

Write out the operation table for G, and briefly justify why this is the only possibility.

