Fall 2020, Math 620: Week 2 Problem Set Due: Wednesday, September 9th, 2020 Subgroups, Cyclic Groups, and Isomorphisms

Discussion problems. The problems below should be completed in class.

- (D1) Cyclic groups. A group (G, \cdot) is cyclic if it can be generated by a single element (that is, for some $a \in G$, we have $G = \langle a \rangle = \{a^r : r \in \mathbb{Z}\}$.)
 - (a) Suppose n = |G| is finite. Complete the following proof that $G \cong (\mathbb{Z}_n, +)$.

Proof. Since G is cyclic, there is some $a \in G$ with $G = \{a^r : r \in \mathbb{Z}\}$. Consider the map

$$\varphi: G \longrightarrow \mathbb{Z}_n \\ a^r \longmapsto [r]_n$$

First, we see φ is well-defined (that is, for any $r, t \in \mathbb{Z}$, $a^r = a^t$ implies $\varphi(a^r) = \varphi(a^t)$). Moreover, φ is an isomorphism. This completes the proof.

- (b) Give a sketch of a proof that if G is infinite and cyclic then $G \cong \mathbb{Z}$.
- (c) Conclude that up to isomorphism, the only cyclic groups are \mathbb{Z}_n for $n \geq 1$ and \mathbb{Z} .
- (D2) Group automorphisms. An automorphism of a group G is an isomorphism $G \to G$. The set of automorphisms of G, denoted $\operatorname{Aut}(G)$, is itself a group under composition.
 - (a) Find all elements of Aut(\mathbb{Z}). Hint: where can an automorphism send $1 \in \mathbb{Z}$?
 - (b) Find $Aut(\mathbb{Z}_6)$, $Aut(\mathbb{Z}_7)$, and $Aut(\mathbb{Z}_8)$.
 - (c) State and prove a characterization of $|\operatorname{Aut}(\mathbb{Z}_n)|$.
 - (d) Find all elements of $\operatorname{Aut}(\mathbb{Z}_2^3)$.
- (D3) Working with permutations. Consider the following permutations.

$$\sigma = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \\ 3 \ 5 \ 2 \ 4 \ 1 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 4 \ 1 \ 6 \ 3 \ 8 \ 2 \ 5 \ 7 \end{pmatrix} \quad \alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 5 \ 2 \ 8 \ 6 \ 1 \ 4 \ 7 \ 3 \end{pmatrix}$$

- (a) Write each of the above permutations as a product of disjoint cycles.
- (b) Find the order of each element above. Hint: do the disjoint cycles help?
- (c) Write each of the above permutations as a product of 2-cycles in two different ways.
- (d) Determine which of the above permutations are even, and which are odd.
- (e) Is it possible to write σ or τ as a product of disjoint 2-cycles?
- (f) Write σ^{-1} , τ^{-1} , and α^{-1} as a products of disjoint cycles, and as products of 2-cycles. Hint: you have already written σ , τ , and α in these forms!
- (g) Determine whether σ^{91} is even or odd.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Identify a subgroup of $GL_2(\mathbb{R})$ isomorphic to D_4 . Identify a subgroup isomorphic to \mathbb{Z}_6 .
- (H2) It turns out $GL_2(\mathbb{Z}_2)$ is isomorphic to either S_3 or \mathbb{Z}_6 . Determine which.
- (H3) Identify an element of S_9 of order 20.
- (H4) Let $B_n \subset S_n$ denote the set of odd permutations in S_n . Prove that $|B_n| = |A_n| = n!/2$. Hint: can you find a bijection $f : A_n \to B_n$?
- (H5) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) The group $(\mathbb{Q}, +)$ is cyclic.
 - (b) If G is a group and every proper subgroup of G is cyclic, then G is cyclic.
 - (c) For any groups G_1 and G_2 , we have $\operatorname{Aut}(G_1 \times G_2) \cong \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) A graph H is a collection E of 2-element subsets of $\{1, \ldots, n\}$ (called *edges*). An automorphism of a graph is a permutation σ of the integers $1, \ldots, n$ such that $\{a, b\} \in E$ if and only if $\{\sigma(a), \sigma(b)\} \in E$. The set $\operatorname{Aut}(H)$ of automorphisms of a graph H is a group under composition (you are not required to prove this). For example, if H is the 4-cycle graph, with edges $\{1, 2\}, \{2, 3\}, \{3, 4\}, \text{ and } \{4, 1\}, \text{ then } \operatorname{Aut}(H) \cong D_4$.

Identify a graph H whose automorphism group $\operatorname{Aut}(H)$ is isomorphic to $(\mathbb{Z}_5, +)$.