Fall 2020, Math 620: Week 3 Problem Set Due: Wednesday, September 16th, 2020 Permutation Groups

Discussion problems. The problems below should be completed in class.
(D1) Group elements as permutations. The goal of this problem is to develop a proof of the following theorem, as well as intuition for why it holds.

Theorem. Every finite group G with $|G|=n$ is isomorphic to a subgroup of S_{n}.
(a) The goal of the first few parts is to identify a subgroup of S_{6} isomorphic to D_{3}. Choose a labeling of the elements of D_{3} as $a_{1}, a_{2}, \ldots, a_{6}$ (you may do this in any way you wish).
(b) Let $r \in D_{3}$ denote clockwise rotation by 120°. Define a permutation $\sigma \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=r a_{i}$. Verify that σ is indeed a permutation by writing it in permutation notation.
(c) Repeat the previous part for each $a \in D_{3}$ (that is, define a permutation $\sigma_{a} \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=a a_{i}$). Write down all 6 resulting permutations (you may want to "divide and conquer" amongst your groupmates to save time!).
(d) Verify in three examples that for any $a, b \in D_{3}$, the permutation corresponding to $a b$ equals the product of the permutations corresponding to a and b.
(e) Using the ideas above, find a subgroup of S_{4} isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Prove S_{n} is isomorphic to a subgroup of A_{n+2}.
(H2) Locate a generating set for S_{n} consisting of only 2 generators.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) For each $n \geq 3$, every permutation in S_{n} can be written as a product of 3-cycles.
(b) For each $n \geq 2$, every permutation in S_{n} is a product of at most $n-1$ transpositions.
(c) For each $n \geq 3$, every permutation in S_{n} is a product of adjacent transpositions.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Determine what familiar group is isomorphic to $\operatorname{Aut}\left(S_{3}\right)$.

