Fall 2020, Math 620: Week 4 Problem Set Due: Thursday, September 24th, 2020 Cosets and Quotient Groups

Discussion problems. The problems below should be completed in class.

- (D1) Arithmetic in quotient groups. Consider the unit interval as an additive group, viewed as the quotient group \mathbb{R}/\mathbb{Z} .
 - (a) Explain why every element of \mathbb{R}/\mathbb{Z} has a representative in [0, 1).
 - (b) Show that \mathbb{R}/\mathbb{Z} has elements of every possible order.
 - (c) Does \mathbb{Q}/\mathbb{Z} have elements of every possible order?
 - (d) Does \mathbb{Q}/\mathbb{Z} have infinitely many elements of a particular order?
- (D2) *Subgroup correspondence*. The goal of this problem is to discover the "correspondence theorem" for subgroups of quotient groups.
 - (a) Draw the subgroup lattice of \mathbb{Z}_{24} . Write each subgroup in the form $\langle n \rangle$.
 - (b) Do the same for the subgroup lattice of \mathbb{Z}_{72} .
 - (c) Locate a subgroup $H \subset \mathbb{Z}_{72}$ so that $\mathbb{Z}_{72}/H \cong \mathbb{Z}_{24}$. Do you notice any relationship between the subgroup lattice of \mathbb{Z}_{24} and the subgroups of \mathbb{Z}_{72} containing H?
 - (d) If there are more than 10 minutes left in class, find all subgroups of the group D_4 . Use your list to determine how many subgroups the quotient group $D_4/\{e, r^2\}$ has.
 - (e) Fix a group G and a normal subgroup $H \lhd G$. Formulate a conjecture specifying a bijection between the subgroups of G/H and certain subgroups of G. Use the map $G \rightarrow G/H$ to specify the bijection.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Suppose G is a group and $H \subset G$ is a subgroup. Prove without using any theorems that $b \in aH$ if and only if bH = aH.
- (H2) Prove A_n is a normal subgroup of S_n .
- (H3) Fix a group G. Define the *center* of G as the set

 $C = \{ c \in G : ca = ac \text{ for all } a \in G \}$

of elements that commute with every element of G.

- (a) Prove C is a normal subgroup of G.
- (b) Prove or disprove: G/C has trivial center.
- (H4) Fix a group (G, \cdot) and a normal subgroup $H \subset G$, and consider the map

$$\varphi: G \longrightarrow G/H \\ a \longmapsto [a]_H.$$

The goal of this problem is to prove the correspondence theorem from Problem (D2).

- (a) Prove that if $K \subseteq G/H$ is a subgroup, then $\varphi^{-1}(K)$ is a subgroup of G containing H.
- (b) Prove that if $K \subseteq G$ is a subgroup with $H \subseteq K$, then $\varphi(K)$ is a subgroup of G/H.

(H5) The following questions pertain to the correspondence theorem from Problem (D2).

- (a) If a subgroup of G/H is normal, is its corresponding subgroup of G normal? What about the converse of this statement?
- (b) If a subgroup of G/H is cyclic, is its corresponding subgroup of G cyclic? What about the converse of this statement?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Suppose p is prime. Find all groups G (up to isomorphism) with $|G| = p^2$.