Fall 2020, Math 620: Week 5 Problem Set
 Due: Thursday, October 1st, 2020
 Isomorphism Theorems

Discussion problems. The problems below should be worked on in class.
(D1) The first isomorphism theorem. Prove the following using the first isomorphism theorem.
(a) For any groups G and $G^{\prime}, G \times G^{\prime} /(G \times\{e\}) \cong G^{\prime}$. (Here, $G \times\{e\}$ is shorthand for the subgroup $\left.\{(g, e): g \in G\} \subset G \times G^{\prime}\right)$.
(b) $D_{24} /\left\langle r^{6}\right\rangle \cong D_{6}$.
(D2) The third isomorphism theorem. The goal of this problem is to prove the following theorem. Tip: due to the large number of quotients in this problem, use the bracket notation for all quotient group elements (e.g., $[a]_{H}$).

Theorem. If (G, \cdot) is a group and $K, H \triangleleft G$ with $K \subset H$, then $(G / K) /(H / K) \cong G / H$.
(a) Let $G=\mathbb{Z}_{24}, H=\left\{[3 k]_{24}: k \in \mathbb{Z}\right\}$, and $K=\left\{[12 k]_{24}: k \in \mathbb{Z}\right\}$. Verify the above theorem holds in this case.
(b) Explain why H / K is a subset of G / K. Use the word "coset" in your explanation.
(c) Prove the third isomorphism theorem using the first isomorphism theorem. In particular, find a homomorphism $\phi: G / K \rightarrow G / H$ whose kernel equals H / K.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Prove that if $H \subseteq G$ is a subgroup and $[G: H]=2$, then H is normal.
(H2) Suppose G is a group. Given $a \in G$, define $f_{a}: G \rightarrow G$ by $f_{a}(x)=a x a^{-1}$.
(a) Prove f_{a} is an automorphism (these are known as inner automorphisms).
(b) Let $G^{\prime}=\left\{f_{a}: a \in G\right\} \subset \operatorname{Aut}(G)$. Prove G^{\prime} is a normal subgroup of $\operatorname{Aut}(G)$.
(c) Let $\varphi: G \rightarrow G^{\prime}$ denote the map $a \mapsto f_{a}$. Characterize the elements of G in $\operatorname{ker}(\varphi)$.
(d) Characterize which groups G have a unique inner automorphism.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If G is a group and $H, K \triangleleft G$ with $K \subset H$, then $G / H \times H / K \cong G / K$.
(b) If G, G^{\prime} are groups and $H \triangleleft G, H^{\prime} \triangleleft G^{\prime}$, then $\left(G \times G^{\prime}\right) /\left(H \times H^{\prime}\right) \cong(G / H) \times\left(G^{\prime} / H^{\prime}\right)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose G is a group and $H, K \triangleleft G$ with $H K=G$. Determine under what condition(s) involving H and K we have $G \cong G / H \times G / K$.

