Fall 2020, Math 620: Week 6 Problem Set Due: Thursday, October 8th, 2020 Relations and Group Presentations

Discussion problems. The problems below should be completed in class.

- (D1) Free groups and relations.
 - (a) Let $F_1 = \langle a \rangle$ denote the free group on 1 generator. Locate an isomorphism $F_1 \to \mathbb{Z}$. (You do not have to prove it is an isomorphism.)
 - (b) Draw the Cayley graph of the group $G = \langle r, f \mid f^2, rfrf \rangle$ (this is identical to the presentation of D_n without the r^n relation). Is G finite or infinite?
 - (c) Let $G = \langle a, b \mid a^2, b^2, aba^{-1}b^{-1} \rangle$. Determine what more familiar group G is.
- (D2) Group presentations. Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators.
 - (a) For each of the following normal subgroups H_1 and H_2 , prove $H_1 = H_2$ by representing each generator of H_1 as a product of conjugates of generators of H_2 , and visa versa.
 - (i) $H_1 = \langle a^3 b^2 \rangle, H_2 = \langle b a^3 b \rangle.$
 - (ii) $H_1 = \langle aba^{-1}b^{-1}, a^2b^3ab^4 \rangle, H_2 = \langle aba^{-1}b^{-1}, a^3b^7 \rangle.$
 - $\begin{array}{ll} \text{(iii)} & H_1 = \langle a^4 b a^{-3} b^{-2}, a^3 b^2 a^{-2} b^{-3}, a^2 b^3 a^{-1} b^{-4} \rangle, \\ & H_2 = \langle a^4 b a^{-3} b^{-2}, a^3 b^2 a^{-2} b^{-3}, a^4 b a^{-1} b^{-4} \rangle. \end{array}$

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Let $G = \langle a, b \mid aba^{-1}b^{-2}, bab^{-1}a^{-2} \rangle$. Determine |G|.
- (H2) Identify which "familiar" group each of the following is isomorphic to.
 - (a) $G = \langle a, b \mid a^4, b^2, aba^{-1}b^{-1} \rangle$
 - (b) $G = \langle a, b, c \mid a^4, b^2, c^2, abc, acac \rangle$

(H3) Determine whether each of the following statements is true or false. Prove your assertions.

- (a) If $F_2 = \langle a, b \rangle$ is the free group on 2 generators, then the **subgroup** $H = \langle ab, ab^2 \rangle \subset F_2$ and **normal subgroup** $H' = \langle ab, ab^2 \rangle \subset F_2$ are identical subsets of F_2 .
- (b) The group $(\mathbb{Q}, +)$ is a quotient of the free group on 2 generators.
- (c) Up to isomorphism, the only non-Abelian group of order 8 is D_4 .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Determine which familiar group is isomorphic to $G = \langle a, b \mid a^4, b^2, (ab)^3 \rangle$.