Fall 2020, Math 620: Week 9 Problem Set Due: Thursday, October 29th, 2020 Rings of Fractions and Localization

Discussion problems. The problems below should be completed in class.

(D1) Constructing the rationals from the integers. Define an equivalence relation \sim on $\mathbb{Z} \times \mathbb{Z}_{\neq 0}$ by $(a, b) \sim (a', b')$ when ab' = a'b. Let Q denote the set of equivalence classes of \sim . Define operations \oplus and \odot on Q so that

 $[(a,b)] \oplus [(c,d)] = [(ad+bc,bd)]$ and $[(a,b)] \odot [(c,d)] = [(ac,bd)]$

for all $[(a, b)], [(c, d)] \in Q$. (Intiutively, $[(a, b)] \in Q$ represents $a/b \in \mathbb{Q}$.)

- (a) Prove addition is well-defined in Q, that is, if [(a,b)] = [(a',b')] and [(c,d)] = [(c',d')], then $[(a,b)] \oplus [(c,d)] = [(a',b')] \oplus [(c',d')]$. Do the same for multiplication.
- (b) Prove addition in Q is commutative and associative.
- (c) Prove multiplication in Q is commutative and associative.
- (d) Prove distributivity holds in Q.
- (e) Prove every element of Q has an additive inverse, and that every nonzero element has a multiplicative inverse.
- (D2) Localization.
 - (a) Let $P = \langle 5 \rangle \subset \mathbb{Z}$ and $D = \mathbb{Z} \setminus P$ (that is, the set complement of P in \mathbb{Z}). Verify that D is a multiplicative set.
 - (b) Let $I = \langle 6 \rangle \subset \mathbb{Z}$ and $D = \mathbb{Z} \setminus I$. Is D a multiplicative set?
 - (c) Determine for which ideals $J \subset \mathbb{Z}$ the set $\mathbb{Z} \setminus J$ is a multiplicative set.
 - (d) Let $P = \langle 5 \rangle \subset \mathbb{Z}$ and $D = \mathbb{Z} \setminus P$. Find all ideals of $D^{-1}\mathbb{Z}$. Hint: you may use that every ideal in \mathbb{Z} has the form $\langle a \rangle$ for some $a \in \mathbb{Z}$.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Write up a proof for any one part of Problem (D1) you choose. You may use "free of charge" (i.e., without proof) any prior parts of the same discussion problem.
- (H2) Fix a field F with char F = 0. Prove that F has a subring isomorphic to \mathbb{Q} .
- (H3) Fix a ring R and a prime ideal $P \subset R$, and let $D = R \setminus P$.
 - (a) Prove that D is a multiplicative set.
 - (b) Prove that $D^{-1}R$ has a unique maximal ideal (the ring $R_P = D^{-1}R$ is called the *localization of* R at P and plays an important role in algebraic geometry).
 - (c) Classify the ideals of R_P in terms of the ideals of R.
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) If $P \subset R$ is a maximal ideal, then R_P has a unique proper nontrivial ideal.
 - (b) In an integral domain, every ideal is prime.
 - (c) For all $a, b, c \in \mathbb{Q}$ with $a \neq 0$, we have $\mathbb{Q}[x, y]/\langle ax + by + c \rangle \cong \mathbb{Q}[t]$.