## Fall 2020, Math 620: Week 9 Problem Set <br> Due: Thursday, October 29th, 2020 <br> Rings of Fractions and Localization

Discussion problems. The problems below should be completed in class.
(D1) Constructing the rationals from the integers. Define an equivalence relation $\sim$ on $\mathbb{Z} \times \mathbb{Z}_{\neq 0}$ by $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ when $a b^{\prime}=a^{\prime} b$. Let $Q$ denote the set of equivalence classes of $\sim$. Define operations $\oplus$ and $\odot$ on $Q$ so that

$$
[(a, b)] \oplus[(c, d)]=[(a d+b c, b d)] \quad \text { and } \quad[(a, b)] \odot[(c, d)]=[(a c, b d)]
$$

for all $[(a, b)],[(c, d)] \in Q$. (Intiutively, $[(a, b)] \in Q$ represents $a / b \in \mathbb{Q}$.)
(a) Prove addition is well-defined in $Q$, that is, if $[(a, b)]=\left[\left(a^{\prime}, b^{\prime}\right)\right]$ and $[(c, d)]=\left[\left(c^{\prime}, d^{\prime}\right)\right]$, then $[(a, b)] \oplus[(c, d)]=\left[\left(a^{\prime}, b^{\prime}\right)\right] \oplus\left[\left(c^{\prime}, d^{\prime}\right)\right]$. Do the same for multiplication.
(b) Prove addition in $Q$ is commutative and associative.
(c) Prove multiplication in $Q$ is commutative and associative.
(d) Prove distributivity holds in $Q$.
(e) Prove every element of $Q$ has an additive inverse, and that every nonzero element has a multiplicative inverse.
(D2) Localization.
(a) Let $P=\langle 5\rangle \subset \mathbb{Z}$ and $D=\mathbb{Z} \backslash P$ (that is, the set complement of $P$ in $\mathbb{Z}$ ). Verify that $D$ is a multiplicative set.
(b) Let $I=\langle 6\rangle \subset \mathbb{Z}$ and $D=\mathbb{Z} \backslash I$. Is $D$ a multiplicative set?
(c) Determine for which ideals $J \subset \mathbb{Z}$ the set $\mathbb{Z} \backslash J$ is a multiplicative set.
(d) Let $P=\langle 5\rangle \subset \mathbb{Z}$ and $D=\mathbb{Z} \backslash P$. Find all ideals of $D^{-1} \mathbb{Z}$.

Hint: you may use that every ideal in $\mathbb{Z}$ has the form $\langle a\rangle$ for some $a \in \mathbb{Z}$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Write up a proof for any one part of Problem (D1) you choose. You may use "free of charge" (i.e., without proof) any prior parts of the same discussion problem.
(H2) Fix a field $F$ with char $F=0$. Prove that $F$ has a subring isomorphic to $\mathbb{Q}$.
(H3) Fix a ring $R$ and a prime ideal $P \subset R$, and let $D=R \backslash P$.
(a) Prove that $D$ is a multiplicative set.
(b) Prove that $D^{-1} R$ has a unique maximal ideal (the ring $R_{P}=D^{-1} R$ is called the localization of $R$ at $P$ and plays an important role in algebraic geometry).
(c) Classify the ideals of $R_{P}$ in terms of the ideals of $R$.
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If $P \subset R$ is a maximal ideal, then $R_{P}$ has a unique proper nontrivial ideal.
(b) In an integral domain, every ideal is prime.
(c) For all $a, b, c \in \mathbb{Q}$ with $a \neq 0$, we have $\mathbb{Q}[x, y] /\langle a x+b y+c\rangle \cong \mathbb{Q}[t]$.

