Fall 2020, Math 620: Week 13 Problem Set Due: Thursday, December 3rd, 2020 Field Extensions

Discussion problems. The problems below should be completed in class.

(D1) Splitting fields.

- (a) Find the minimal polynomials of $\sqrt{2}$, $3\sqrt{2} + 4$, and $\sqrt[3]{2} + 1$ over \mathbb{Q} .
- (b) Argue that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$
- (c) Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
- (d) Does $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ have the same degree for any distinct integers $m, n \geq 2$?
- (e) Find the splitting field of $(x^2 5)(x^2 7)$ over \mathbb{Q} .
- (f) Find the splitting field of $x^4 4$ over \mathbb{Q} .
- (g) Find the splitting field of $x^d 1$ over \mathbb{Q} for d = 2, 3, 4, 5, and 6.
- (h) Conjecture a formula in $d \ge 2$ for the degree of the splitting field of $x^d 1$ over \mathbb{Q} .

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Find the minimal polynomial of $\sqrt{3} + \sqrt[3]{2}$ over \mathbb{Q} .
- (H2) Find the splitting field of $x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ over \mathbb{Z}_3 .
- (H3) Fix a prime p. In this problem, we will construct the algebraic closure of \mathbb{Z}_p . Hint: you may find The Key Lemma useful frequently!
 - (a) Fix $t \geq 1$. Prove \mathbb{F}_{p^t} has a subfield isomorphic to \mathbb{F}_{p^r} if and only if $r \mid t$.
 - (b) Prove that if $r \mid t$, then there is a **unique** subfield of \mathbb{F}_{p^t} isomorphic to \mathbb{F}_{p^r} . In light of this, in what follows, when $r \mid t$, it is natural to write $\mathbb{F}_{p^r} \subset \mathbb{F}_{p^t}$, identifying \mathbb{F}_{p^r} with the subfield of \mathbb{F}_{p^t} it is isomorphic to.
 - (c) Let $F = \bigcup_{t \ge 1} \mathbb{F}_{p^t}$. Prove that F is a field.
 - (d) Prove that F is algebraically closed.
 - (e) Prove that $F = \overline{\mathbb{Z}}_p$, i.e., there is no algebraically closed field F' with $\mathbb{F}_q \subseteq F' \subsetneq F$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Locate a field F that has cardinality strictly larger than \mathbb{R} .