Fall 2021, Math 596: Week 1 Problem Set Due: Thursday, September 2nd, 2021 Preview of Geometry

Discussion problems. The problems below should be worked on in class.
(D1) Exhibiting Ehrhart's theorem. For each polytope P below, do the following:
(i) draw P (as best you can);
(ii) find $L_{P}(t)$ for $t=1,2,3,4$;
(iii) use the values in (ii) to find the coefficients of the Ehrhart polynomial of P; and
(iv) verify that the constant term and leading coefficient of $L_{P}(t)$ are as predicted by Ehrhart's theorem.

Please verify your answers for part (a) with me before continuing on to part (b).
(a) $P=\operatorname{conv}\{(0,1),(1,0),(-1,0),(-1,1),(-1,-1)\}$.
(b) $P=\operatorname{conv}\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$.
(c) $P=\operatorname{conv}\{(1,0,0),(0,1,0),(0,0,1)\}$.
(D2) Pick's theorem.
(a) Locate a lattice triangle $T \subset \mathbb{R}^{2}$ (that is, a triangle whose vertices are lattice points) such that T contains exactly 3 lattice points (namely, it's vertices) and has the largest possible area.
(b) Locate a lattice triangle T containing exactly 4 lattice points, one of which lies on the interior of T, and has the largest possible area.
(c) Suppose $P \subset \mathbb{R}^{2}$ is a lattice polygon, and let I, B, and A denote the number of interior lattice points of P, boundary lattice points of P, and area of P, respectively. By Ehrhart's theorem, we know

$$
L_{P}(t)=a t^{2}+b t+c
$$

for some $a, b, c \in \mathbb{Q}$. Find a formula for a, b, and c in terms of A, B, and I.
(d) Use Ehrhart reciprocity to obtain an equation relating A, B, and I. This is known as Pick's theorem. Note: your answer here should not involve t !
(e) For each $m \in \mathbb{Z}_{\geq 1}$, consider the polytope

$$
P=\operatorname{conv}\{(1,0,0),(0,1,0),(1,1,0),(0,0, m)\}
$$

Find the volume A of P, the number I of interior points of P, and the number B of boundary points of P (note that some, but not all, of these will depend on m). State, in one sentence, what this tells us about the possibility of generalizing Pick's theorem to 3 dimensions.
Hint: you may look up the formula for the volume of a pyramid with triangular base.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the Ehrhart polynomial of

$$
P=\operatorname{conv}\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,1,0)\}
$$

which is a 3 D cube with 2 adjacent vertices removed.
(H2) Let $P=\left[0, \frac{1}{2}\right]$ (that is, the closed interval from 0 to $\frac{1}{2}$). Find a formula for $L_{P}(t)$, and prove your formula holds.
Hint: find $L_{P}(t)$ for $t=1,2,3, \ldots$ until you are convinced you have found a pattern.
(H3) Let $P=\operatorname{conv}\left\{(0,0),(0,1),\left(\frac{1}{2}, 0\right)\right\}$. Find a formula for $L_{P}(t)$, and prove your formula holds. Hint: your formula will likely have cases based on whether t is even or odd.
(H4) Determine whether each of the following statements is true or false. Prove your assertions. (a) If P is a polygon whose vertices lie in \mathbb{Q}^{2}, then Pick's theorem holds for P (that is,

$$
A=I+\frac{1}{2} B-1
$$

where A, B, and I denote the area of P, the number of boundary lattice points of P, and the number of interior lattice points of P, respectively).
(b) Any polytope P satisfies $L_{P}(t)>0$ for some $t \geq 1$.

