Fall 2021, Math 596: Week 2 Problem Set Due: Thursday, September 9th, 2021
 Introduction to Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Manipulating power series. In what follows, denote

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n} \quad \text { and } \quad B(z)=\sum_{n \geq 0} b_{n} z^{n}
$$

(a) For each of the following, find an expression for $A(z)$ that has no sigma-sums. You may find it helpful to reference the first centered equation in Problem (D2), which was also seen in lecture.
(i) $a_{n}=4 n+3$
(ii) $a_{n}=2 n+1$ if n is even, $a_{n}=3 n-1$ if n is odd.
(b) Find a formula for a_{n} in terms of n given the following $A(z)$.
(i) $A(z)=\frac{3 z+17}{1-z^{2}}$.
(ii) $A(z)=\frac{3 z+17}{(1-z)^{2}}$.
(c) For each of the following $A(z)$, find a formula for the coefficients of $B(z)=1 / A(z)$. Then, prove via direct multiplication that $A(z) B(z)=1$.
(i) $A(z)=1-3 z+2 z^{2}$

Hint: find the first few coefficients of $B(z)$ by hand, conjecture a formula for b_{n}.
(ii) $A(z)=\sum_{n \geq 0}(-1)^{n} z^{n}$

Hint: start by writing $A(z)$ as a rational function.
(D2) Power series of polynomial functions. Recall that in lecture, we saw

$$
1+2 z+3 z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

and that the "formal derivative" of $A(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ is

$$
A^{\prime}(z)=\frac{d}{d z} A(z)=a_{1}+2 a_{2} z+3 a_{3} z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}
$$

(a) Manipulate the first expression to write $\sum_{n=0}^{\infty} n z^{n}$ as a rational expression in z.
(b) Use "formal differentiation" to express $\sum_{n=0}^{\infty} n^{2} z^{n}$ as a rational expression in z.
(c) Use "formal differentiation" to express $\sum_{n=0}^{\infty} n^{3} z^{n}$ as a rational expression in z.
(d) Give a proof by induction that for each $d \geq 1$,

$$
\sum_{n=0}^{\infty} n^{d} z^{n}=\frac{Q_{d}(z)}{(1-z)^{d+1}}
$$

for some polynomial $Q_{d}(z)$.
Hint: start by identifying $Q_{1}(z), Q_{2}(z)$, and $Q_{3}(z)$ from parts (a), (b), and (c).

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find a rational expression for $A(z)=\sum_{\geq 0} a_{n} z^{n}$ in terms of z for each of the following sequences a_{n}. Your answer should not contain any "..." or sigma-sums.
Hint: you can substantially shorten the algebra needed to obtain your answer with clever use of power series we have already encountered.
(a) $a_{n}=n^{3}+7 n^{2}+3 n-5$
(b) $a_{n}=n 2^{n}-n^{2} 3^{n}$
(H2) Find a formula for a_{n} for each of the following power series $A(z)=\sum_{n \geq 0} a_{n} z^{n}$. Note: your formula for a_{n} should be in terms of n and have no sigma-sums in it!
(a) $A(z)=\frac{1}{2+z}$
(b) $A(z)=\frac{5+2 z+z^{2}}{1-z^{3}}$
(c) $A(z)=\frac{z^{2}+1}{(1-z)^{3}}$

Hint: start by writing this series as a combination of those from Problem (D2).
(H3) Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$. Prove that $A(z)$ has a multiplicative inverse if and only if $a_{0} \neq 0$. Hint: if $A(z) B(z)=1$ for some $B(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$, show each b_{n} is determined by $a_{0}, a_{1}, \ldots, a_{n}$.
(H4) Define $c(n)=1$ if there exists a way to write n as a sum of the values 3 and 5 , and $c(n)=0$ otherwise. For instance, $c(13)=1$ since $13=3+5+5$, and $c(15)=1$ since $15=5+5+5$ (as well as $15=3+3+3+3+3$), but $c(7)=0$ since there is no way to add 3 's and 5 's together to obtain 7 . Prove that

$$
\sum_{n=0}^{\infty} c(n) z^{n}=\frac{1-z^{15}}{\left(1-z^{3}\right)\left(1-z^{5}\right)}
$$

Note: $c(0)=1$ since $0=0 \cdot 3+0 \cdot 5$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Conjecture and prove an analogous result to Problem (H4) where positive integers n_{1} and n_{2} replace 3 and 5 .

