Fall 2021, Math 596: Week 3 Problem Set
 Due: Thursday, September 16th, 2021
 Generating Functions - Deep Cuts

Discussion problems. The problems below should be worked on in class.
(D1) Recurrence relations. For each of the following, (i) compute a_{0}, \ldots, a_{5}, (ii) use generating functions to find a formula for a_{n} in terms of n, and (iii) verify your formula for $n \leq 5$.
(a) $a_{0}=1, a_{1}=3, a_{n}=3 a_{n-2}$
(b) $a_{0}=3, a_{1}=1, a_{n}=2 a_{n-1}+3 a_{n-2}$
(D2) Power series derivatives. Fix formal power series $A(z)$ and $B(z)$. The goal of this problem is to prove some of the "derivative rules" from Calculus.
(a) Prove that if $k \geq 1$, then $\frac{d}{d z}\left[(B(z))^{k}\right]=k(B(z))^{k-1} B^{\prime}(z)$.

Hint: this can be done without writing any sigma-sums, instead using product rule and induction on k.
(b) Prove that if $B(z)$ has constant term zero, then $\frac{d}{d z}[A(B(z))]=A^{\prime}(B(z)) B^{\prime}(z)$.

Hint: use part (a) and sigma-sums, but avoid writing " b_{n} " at all costs.
(D3) Generating functions of polynomials. We saw in class that for each $d \geq 0$, there exists a polynomial $Q_{d}(z)$ such that

$$
\sum_{n \geq 0} n^{d} z^{n}=\frac{Q_{d}(z)}{(1-z)^{d+1}}
$$

(a) Write down $Q_{1}(z), Q_{2}(z)$, and $Q_{3}(z)$ for reference (you may consult your notes).
(b) Using formal derivatives, obtain an expression for $Q_{d}(z)$ in terms of $Q_{d-1}(z)$.
(c) Use your expression from part (a) to show that $Q_{d}(z)$ has degree d.
(d) Use your expression from part (a) to show that $Q_{d}(z)$ has no constant term.
(e) Find a formula for $Q_{d}(1)$. Use your expression from part (a) to verify this.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use generating functions to find a formula for a_{n} if $a_{0}=1$ and $a_{n}=3 a_{n-1}+2^{n}$.
(H2) Recall that the Fibonacci sequence f_{n} is defined by $f_{0}=0, f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$. Use generating functions to show that

$$
f_{n}=\frac{1}{\sqrt{5}} \omega^{n}-\frac{1}{\sqrt{5}} \bar{\omega}^{n}
$$

where

$$
\omega=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \bar{\omega}=\frac{1-\sqrt{5}}{2}
$$

Hint: begin by verifying that $1-z-z^{2}=(1-\omega z)(1-\bar{\omega} z)$.
(H3) The goal of this problem is to prove the quotient rule for power series.
(a) Prove that if $B(z)$ has a nonzero constant term, then

$$
\frac{d}{d z}\left[(B(z))^{-1}\right]=\frac{-B^{\prime}(z)}{(B(z))^{2}}
$$

Hint: to save a LOT of algebra, take the derivative of both sides of $B(z)(B(z))^{-1}=1$ using the product rule.
(b) Prove that if $B(z)$ has a nonzero constant term, then

$$
\frac{d}{d z}\left[\frac{A(z)}{B(z)}\right]=\frac{A^{\prime}(z) B(z)-A(z) B^{\prime}(z)}{(B(z))^{2}}
$$

Hint: using part (a) and the product rule can save a LOT of algebra.
(H4) Resuming notation from Problem (D3), prove the coefficients of the positive-degree terms of $Q_{d}(z)$ are positive integers.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove the coefficients of $Q_{d}(z)$ are symmetric (that is, if we write $Q_{d}(z)=a_{d} z^{d}+\cdots+a_{1} z$, then $a_{i}=a_{d+1-i}$ for each i).

