Fall 2021, Math 596: Week 3 Problem Set Due: Thursday, September 16th, 2021 Generating Functions - Deep Cuts

Discussion problems. The problems below should be worked on in class.

- (D1) Recurrence relations. For each of the following, (i) compute a_0, \ldots, a_5 , (ii) use generating functions to find a formula for a_n in terms of n, and (iii) verify your formula for $n \leq 5$.
 - (a) $a_0 = 1, a_1 = 3, a_n = 3a_{n-2}$
 - (b) $a_0 = 3, a_1 = 1, a_n = 2a_{n-1} + 3a_{n-2}$
- (D2) Power series derivatives. Fix formal power series A(z) and B(z). The goal of this problem is to prove some of the "derivative rules" from Calculus.
 - (a) Prove that if $k \ge 1$, then $\frac{d}{dz}[(B(z))^k] = k(B(z))^{k-1}B'(z)$. Hint: this can be done without writing any sigma-sums, instead using product rule and induction on k.
 - (b) Prove that if B(z) has constant term **zero**, then $\frac{d}{dz}[A(B(z))] = A'(B(z))B'(z)$. Hint: use part (a) and sigma-sums, but avoid writing " b_n " at all costs.
- (D3) Generating functions of polynomials. We saw in class that for each $d \ge 0$, there exists a polynomial $Q_d(z)$ such that

$$\sum_{n \ge 0} n^d z^n = \frac{Q_d(z)}{(1-z)^{d+1}}$$

- (a) Write down $Q_1(z)$, $Q_2(z)$, and $Q_3(z)$ for reference (you may consult your notes).
- (b) Using formal derivatives, obtain an expression for $Q_d(z)$ in terms of $Q_{d-1}(z)$.
- (c) Use your expression from part (a) to show that $Q_d(z)$ has degree d.
- (d) Use your expression from part (a) to show that $Q_d(z)$ has no constant term.
- (e) Find a formula for $Q_d(1)$. Use your expression from part (a) to verify this.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Use generating functions to find a formula for a_n if $a_0 = 1$ and $a_n = 3a_{n-1} + 2^n$.
- (H2) Recall that the Fibonacci sequence f_n is defined by $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. Use generating functions to show that

$$f_n = \frac{1}{\sqrt{5}}\,\omega^n - \frac{1}{\sqrt{5}}\,\overline{\omega}^n,$$

where

$$\omega = \frac{1+\sqrt{5}}{2}$$
 and $\overline{\omega} = \frac{1-\sqrt{5}}{2}$

Hint: begin by verifying that $1 - z - z^2 = (1 - \omega z)(1 - \overline{\omega} z)$.

- (H3) The goal of this problem is to prove the *quotient rule* for power series.
 - (a) Prove that if B(z) has a **nonzero** constant term, then

$$\frac{d}{dz} \left[(B(z))^{-1} \right] = \frac{-B'(z)}{(B(z))^2}.$$

Hint: to save a LOT of algebra, take the derivative of both sides of $B(z)(B(z))^{-1} = 1$ using the product rule.

(b) Prove that if B(z) has a **nonzero** constant term, then

$$\frac{d}{dz} \left[\frac{A(z)}{B(z)} \right] = \frac{A'(z)B(z) - A(z)B'(z)}{(B(z))^2}$$

Hint: using part (a) and the product rule can save a LOT of algebra.

(H4) Resuming notation from Problem (D3), prove the coefficients of the positive-degree terms of $Q_d(z)$ are positive integers.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove the coefficients of $Q_d(z)$ are symmetric (that is, if we write $Q_d(z) = a_d z^d + \cdots + a_1 z$, then $a_i = a_{d+1-i}$ for each i).