Fall 2021, Math 596: Week 5 Problem Set
 Due: Thursday, September 30th, 2021
 The Bridge from Power Series to Geometry

Discussion problems. The problems below should be worked on in class.
(D1) Power series to geometry. In this problem, we will explore a geometric interpretation of rational power series.
(a) Using power series multiplication, find all nonzero terms in

$$
A\left(z_{1}, z_{2}\right)=\frac{1}{\left(1-z_{1}^{3} z_{2}\right)\left(1-z_{2}^{2}\right)}
$$

with total degree at most 10 . Plot their exponents as points in \mathbb{R}^{2}.
(b) Will any of the coefficients of $A\left(z_{1}, z_{2}\right)$ be larger than 1 ?
(c) Do the same for the power series

$$
B\left(z_{1}, z_{2}\right)=\frac{1}{\left(1-z_{1}^{2}\right)\left(1-z_{1} z_{2}\right)\left(1-z_{2}^{2}\right)}
$$

Label each point with its coefficient in $B\left(z_{1}, z_{2}\right)$.
(d) On the same axes as part (c), label each point with its coefficient in

$$
C\left(z_{1}, z_{2}\right)=\frac{1-z_{1}^{2} z_{2}^{2}}{\left(1-z_{1}^{2}\right)\left(1-z_{1} z_{2}\right)\left(1-z_{2}^{2}\right)}
$$

(e) Does it appear like any of the terms in $C\left(z_{1}, z_{2}\right)$ will have coefficient larger than 1 ? What is the relationship between the point $(2,2)$ in part (c) and the term " $-z_{1}^{2} z_{2}^{2 "}$ in the numerator of $C\left(z_{1}, z_{2}\right)$?
(D2) Geometry to power series. Find a rational expression for

$$
A\left(z_{1}, z_{2}\right)=\sum_{(a, b) \in S} z_{1}^{a} z_{2}^{b}
$$

for each of the following sets $S \subset \mathbb{Z}_{\geq 0}^{2}$. You do not have to simplify your answer.
(a) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 2 a \geq b\right\}$
(b) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 2 a<b\right\}$

Hint: use part (a) to your advantage.
(c) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 2 a \geq b\right.$ and $\left.b \geq 2\right\}$

Hint: use part (a) to your advantage.
(d) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 2 a \geq b\right.$ and $\left.2 b \geq a\right\}$
(e) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: a \geq 1\right.$ and $\left.1 \leq b \leq 4\right\}$
(f) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: a \geq 1\right.$ and $\left.1 \leq b \leq 400\right\}$

Note: try to do this with as small of a numerator as possible.
(g) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: a+b \equiv 0 \bmod 3\right\}$
(D3) A 3D example. The goal of this problem is to find a rational expression for the power series

$$
A\left(z_{1}, z_{2}, z_{3}\right)=\sum_{(a, b, c) \in S} z_{1}^{a} z_{2}^{b} z_{3}^{c}
$$

where $S=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0}^{2}: a \leq c\right.$ and $\left.b \leq c\right\}$.
(a) Find all elements $(a, b, c) \in S$ with $c=1$. Do the same for $c=2$.
(b) Use part (a) to (roughly) sketch S. Draw the cross section $c=1$ in a different color.
(c) On Tuesday in class, we saw that

$$
\sum_{(a, b, c) \in T} z_{1}^{a} z_{2}^{b} z_{3}^{c}=\frac{1}{\left(1-z_{3}\right)\left(1-z_{2} z_{3}\right)\left(1-z_{1} z_{2} z_{3}\right)}
$$

where $T=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}: a \leq b \leq c\right\}$. Use this (and symmetry) to find $A\left(z_{1}, z_{2}, z_{3}\right)$.
(d) Consolidate your answer to (c) into a single fraction. Interpret it's numerator.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Given points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right) \in \mathbb{Z}_{\geq 0}^{2}$, the set

$$
S t\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right)=\left\{(a, b) \in \mathbb{Z}_{\geq 0}: \text { there exists an } i \text { with } a \geq a_{i} \text { and } b \geq b_{i}\right\}
$$

is called the staircase generated by $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)$. Find $Q\left(z_{1}, z_{2}\right)$ so that

$$
\sum_{(a, b) \in S} z_{1}^{a} z_{2}^{b}=\frac{Q\left(z_{1}, z_{2}\right)}{\left(1-z_{1}\right)\left(1-z_{2}\right)}
$$

for each of the following sets $S \subset \mathbb{Z}_{\geq 0}^{2}$.
(a) $S=S t((3,1),(0,2))$
(b) $S=S t((0,2),(1,1),(2,0))$
(c) $S=S t((0,4),(1,1),(2,3),(3,0))$
(H2) Find a rational expression for the formal power series

$$
A\left(z_{1}, z_{2}, z_{3}\right)=\sum_{(a, b, c) \in S} z_{1}^{a} z_{2}^{b} z_{3}^{c}
$$

for each of the following sets $S \subset \mathbb{Z}_{\geq 0}^{3}$.
(a) $S=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}: 2 a \geq b+1,2 b \geq a+1, a+b \geq 3\right.$, and $\left.c=0\right\}$
(b) $S=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}: a+b \leq 2\right\}$
(c) $S=\left\{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}: a+b \geq c, b+c \geq a, a+c \geq b\right.$, and $\left.a+b \leq 3 c\right\}$

Hint: to help visualize this set, consider the cross sections with $c=1$ and $c=2$. Alternatively, find all 5 points of S with last coordinate $c=1$, then all 13 points with last coordinate $c=2$.
(H3) Find a rational expression for each of the following.
(a) $A\left(z_{1}, z_{2}\right)=\sum_{a, b \geq 0} \min (a, b) z_{1}^{a} z_{2}^{b}$
(b) $A\left(z_{1}, z_{2}\right)=\sum_{a, b \geq 0} \max (a, b) z_{1}^{a} z_{2}^{b}$

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Characterize which functions $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{C}$ satisfy

$$
\sum_{n \geq 0} f(n) z^{n}=\frac{Q(z)}{R(z)}
$$

for some polynomials $Q(z)$ and $R(z)$ with coefficients in \mathbb{C} and $R(0) \neq 0$.

