Fall 2021, Math 596: Week 6 Problem Set
 Due: Thursday, October 7th, 2021
 Polytopes, Polyhedra, and Cones

Discussion problems. The problems below should be worked on in class.
(D1) Warmup. Consider the polytope $P=H \cap P^{\prime}$, where
$H=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=3\right\} \quad$ and $\quad P^{\prime}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: 0 \leq x_{i} \leq 2\right\}$
After comparing answers to the preliminary problems, find the H - and V-descriptions of P.
(D2) The V-description of a pointed cone. Every pointed cone C can be written as the nonnegative span of a finite set of vectors, i.e., $C=\operatorname{span}_{\geq 0}\left\{v_{1}, \ldots, v_{k}\right\}$. Analogous to how the V-description of a polytope P is the (unique) minimal set of points whose convex hull equals P, the V-description of a pointed cone C is the unique minimal set of ray vectors whose non-negative span equals C. One way to think about this: if a cross-section P of a pointed cone C is a polytope, the vertices of P are the points in P that lie on rays of C.
(a) Find the V-description of each of the following pointed cones.
(i) $C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 3 x_{1} \leq 2 x_{2}, 7 x_{2} \leq 5 x_{1}\right\}$
(ii) $C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: 0 \leq x_{1} \leq x_{2} \leq x_{3}\right\}$
(iii) $C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: 2 x_{1} \geq x_{2}, 2 x_{3} \geq x_{2}, x_{1}+x_{2} \geq x_{3}, x_{2}+x_{3} \geq x_{1}\right\}$
(iv) $C=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2} \geq x_{3}, x_{2}+x_{3} \geq x_{4}, x_{3}+x_{4} \geq x_{1}, x_{4}+x_{1} \geq x_{2}\right\}$
(b) Find the H-description of each of the following pointed cones.
(i) $C=\operatorname{span}_{\geq 0}\{(1,2),(2,1)\}$
(ii) $C=\operatorname{span}_{\geq 0}\{(1,1,0),(0,1,1),(1,0,1),(3,1,1),(1,3,1),(1,1,3)\}$
(iii) $C=\operatorname{span}_{\geq 0}\{(1,0,0,1),(-1,0,0,1),(0,1,0,1),(0,-1,0,1),(0,0,1,1),(0,0,-1,1)\}$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) For each of the following polytopes P, find the (irredundant) H-description (in the form $A x \leq b$) and V-description of P.
Hint: begin by drawing P (as best you can).
(a) $P=\operatorname{conv}\{(-1,-1),(1,-1),(-1,0),(0,0),(0,1),(1,1),(2,1)\}$.
(b) $P=\operatorname{conv}\{(1,0,0),(0,1,0),(-1,-1,0),(0,0,1),(0,0,-1)\}$.
(H2) Given a polytope $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \mathbb{R}^{d}$, the pyramid over P is the polytope

$$
\operatorname{Pyr}(P)=\operatorname{conv}\left(P \cup\left\{e_{d+1}\right\}\right) \subseteq \mathbb{R}^{d+1}
$$

Assuming P has H-description $A x \leq b$, find the H-description of $\operatorname{Pyr}(P)$.
(H3) Prove from first principles (i.e., by showing set containment both ways) that

$$
\operatorname{conv}\left(\{0,1\}^{d}\right)=[0,1]^{d}
$$

To clarify the notation here, $[0,1]^{d}$ is the d-dimensional cube, and $\{0,1\}^{d}$ is the set of d-dimensional 01 -vectors (i.e., the vertices of the d-cube).
(H4) The permutohedron $P_{n} \subset \mathbb{R}^{n}$ is the convex hull of all points whose coordinates are some reordering of $(1,2, \ldots, n)$. For example,

$$
P_{3}=\operatorname{conv}\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\}
$$

Prove that $\operatorname{dim} P_{n}=n-1$ by doing the following:
(i) locate a single linear equation that is satisfied by every vertex of P_{n}, and argue that this proves $\operatorname{dim} P_{n} \leq n-1$; and
(ii) locate $n-1$ linearly independent differences $v-w$ of vertices of P_{n}, and argue that this proves $\operatorname{dim} P_{n} \geq n-1$.
(H5) Consider the polyhedron

$$
R=\left\{(a, b) \in \mathbb{R}^{2}: 2 a \geq b+1,2 b \geq a+1, \text { and } a+b \geq 3\right\}
$$

(a) Locate a polytope P and a cone C such that $R=P+C$, where

$$
P+C=\{p+c: p \in P \text { and } c \in C\}
$$

(b) Is your choice of P unique? Is your choice of C unique?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) The Birkhoff polytope $B_{n} \subset \mathbb{R}^{n^{2}}$ has as its vertices the 01-matrices with exactly one 1 in each row and column (there are $n!$ such matrices). Find $\operatorname{dim} B_{n}$.

